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Elicitation by design in ecology: using expert opinion
to inform priors for Bayesian statistical models
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Abstract. Bayesian statistical modeling has several benefits within an ecological context.
In particular, when observed data are limited in sample size or representativeness, then the
Bayesian framework provides a mechanism to combine observed data with other ‘‘prior’’
information. Prior information may be obtained from earlier studies, or in their absence, from
expert knowledge. This use of the Bayesian framework reflects the scientific ‘‘learning cycle,’’
where prior or initial estimates are updated when new data become available. In this paper we
outline a framework for statistical design of expert elicitation processes for quantifying such
expert knowledge, in a form suitable for input as prior information into Bayesian models. We
identify six key elements: determining the purpose and motivation for using prior information;
specifying the relevant expert knowledge available; formulating the statistical model; designing
effective and efficient numerical encoding; managing uncertainty; and designing a practical
elicitation protocol. We demonstrate this framework applies to a variety of situations, with
two examples from the ecological literature and three from our experience. Analysis of these
examples reveals several recurring important issues affecting practical design of elicitation in
ecological problems.
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INTRODUCTION

The benefits of Bayesian statistical modeling for

ecological applications are now well established (Ellison

1996, 2004). One major benefit is that the Bayesian

approach embodies a natural cycle of learning that is

well suited to the ecological context (Wade 2001). It

provides a framework where current knowledge can be

updated by new information, so that the results

(posterior) of one study can be used as the starting

point (prior) for the next study. This representation of

the scientific method permits more accelerated and

integrated assessments: by enabling a series or sequence

of smaller studies to replace a single large scale study

(Fleischman and Burwen 2003, McCarthy and Masters

2005), or allowing progressive improvements to study,

data design or measurement (Cummings et al. 2002,

Chao 2003).

As for frequentist statistics, the Bayesian learning

cycle starts with formulation of a statistical model,

known as the likelihood p(y j h), which describes the

chance of observing data y given a model with

parameters h. What is often required, however, is a

reverse of this logic (Crome et al. 1996, Wade 2001,

Prato 2005). This is called the posterior p(h j y) and

instead provides a basis for inference about h while

conditioning on the data y that have been observed. This

is useful for preliminary inferences based on limited

data, such as non-replicated experiments which are

common in ecology (Reckhow 1990). The reversal is

achieved via Bayes theorem:

pðhjyÞ } pðyjhÞpðhÞ ð1Þ

but requires specification of a prior distribution p(h) of
the model parameters. Priors reflect information about

parameters, which must be independent of the observed

data y that are used to construct the likelihood (ter

Braak and Etienne 2003).

Initially, priors can be constructed as an end in

themselves (e.g.,Alho et al. 1996) to represent the current

state of knowledge (e.g., Low Choy et al. 2005), or to

inform design of data collection (Kadane 1990). Prior

knowledge can be incorporated from previous experi-

mentation (Anholt et al. 2000), meta-analysis across

previous studies (e.g., Link and Sauer 1996), or expert

knowledge (Garthwaite and O’Hagan 2000). Bayesian

modeling with informative priors based on expert

opinion can provide a useful ‘‘bridge’’ for ecologists,

from purely conceptual models to statistical models that

are calibrated to observed data. Conceptual models,

where relationships and/or parameters are posited by

experts but not validated against data, are widespread in

ecology: multiple criterion analysis for habitat scoring

(e.g., Roloff and Kernohan 1999) or conservation

prioritization (e.g., Clark et al. 2006); sediment transport

modeling (Merritt et al. 2003); bioregionalization (e.g.,
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Accad et al. 2005); estimating parameters for determin-

istic models (e.g., Boyce et al. 2005).

There has been considerable debate about using

subjective opinion to construct priors (Cox 2000,

O’Hagan et al. 2006). Indeed, the use of prior

information from previous studies is considered by

some to be the only ‘‘objective’’ approach to Bayesian

modeling (Clyde 1999, Hobbs and Hilborn 2006).

However, representation of probabilities and uncertain-

ty under both Frequentist and Bayesian paradigms share

a subjective element (Lindley 2000, Dawid 2004), and

other choices such as model and data are similarly

subjective (Pearce et al. 2001, Ferrier et al. 2002,

Burgman 2004). An advantage of the Bayesian frame-

work is that it requires subjective information in the

form of priors to be stated explicitly and precisely before

modeling (Wintle et al. 2003). This avoids the possibility

of expert opinion being used post-hoc to modify model

results or tuning parameters, which can be of limited

benefit (Pearce et al. 2001).

Statistical design underlying elicitation of this prior

information from experts is therefore a crucial step. In

this paper, we describe the steps involved in designing

elicitation, we illustrate these steps briefly using two

examples from the literature, and in more depth using

three case studies from our recent experience. These case

studies reveal several issues commonly encountered

during design of elicitation in ecological contexts.

ELICITATION

In Bayesian statistical modeling, ‘‘expert elicitation’’

refers to the process of obtaining expert opinion,

together with uncertainty, which is then carefully

formulated into informative prior distributions (Spetzler

and Staël von Holstein 1975, O’Hagan et al. 2006). The

main steps involved in elicitation as experienced by the

expert are well documented (Hogarth 1975, Spetzler and

Staël von Holstein 1975, Shepherd and Kirkwood 1994,

Garthwaite and O’Hagan 2000, Clemen and Reilly 2001,

Renooij 2001, Walls and Quigley 2001, Jenkinson 2005).

We are more concerned in this paper with the main steps

required by the statistician, in particular initial efforts

required to design elicitation. Several steps are involved:

E1) Determine purpose and motivation for using

prior information (Introduction).

E2) Specify available prior knowledge from experts

or other sources, to define an appropriate and

achievable goal of elicitation.

E3) Formulate a statistical model representing the

ecological conceptual model. Define the likeli-

hood p(y j h) characterizing the data model; and

the prior p(h) reflecting available prior knowl-

edge.

E4) Design numerical encoding (measurement tech-

nique) for effective elicitation of prior information

and representation as a statistical distribution.

a) Make a crucial decision: whether a structural

(direct) or indirect approach to elicitation is

more appropriate.

b) Select summary statistics to be elicited, their

order and appropriate units.

c) Determine communication method(s) appro-

priate for eliciting required information (visu-

al, tabular, verbal including wording of

questions, and so on).

d) Specify the estimation method to calculate

prior model parameters from elicited infor-

mation; this is especially important for

indirect methods.

e) Determine the relative weight of the prior and

the likelihood, e.g., by specifying effective

prior sample size or other function of prior

variance.

E5) Manage uncertainty for accurate and robust

elicitation.

a) Consider eliciting from multiple experts.

b) Condition experts to potential biases.

c) Design elicitation to minimize significant

biases and verify elicited information.

d) Perform sensitivity analysis to assumptions

(e.g., priors) governing elicitation.

e) Validate elicited results, e.g., via provision of

feedback or calibration.

E6) Design an elicitation protocol to manage logistics

of implementing elicitation.

a) Select and motivate contributors and other

sources of prior information.

b) Determine relative contribution of experts

and other sources, e.g., by pooling or more

sophisticated methods such as meta-analysis.

c) Choose delivery mechanisms, e.g., question-

naires, individual interview, panels.

d) Carefully design preparation of experts, in-

cluding motivation and training.

e) Consider judicious use of technology to

facilitate or streamline delivery.

We briefly define these steps. Various motivations

(E1) for including prior information were reviewed in

the Introduction. Key questions are whether this prior

information provides the basis for standalone analysis

or combination, with existing or yet-to-be-collected

data, within a Bayesian statistical or other model? Is

expert knowledge the sole or best source of information

available, or does it complement information gaps in

existing data sets?

The goal (E2) focuses on expert knowledge available.

Consider the application of logistic regression (E3) to

model species occurrence based on habitat (Elicitation in

Ecology, case C [below]). Several elicitation methods are

available (O’Leary et al. 2008a), each based on different

expert knowledge. Experts could be asked directly to

estimate the effects of habitat factors (Fleishman et al.

2001), or more simply to indicate whether these factors
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simply increase, decrease or have no effect on the

response (Kuhnert et al. 2005, Martin et al. 2005,

O’Leary et al. 2008a). Those familiar with species

response curves could be asked to plot probability of

presence (median and quartiles; see Plate 1) against

values of a single habitat factor, assuming that all other

factors are held constant at their optimum (Kynn 2006)

or at some other reference values (Al-Awadhi and

Garthwaite 2006). Alternatively experts could be asked

to predict probability of presence at sites given their

covariate values (Denham and Mengersen 2007; A.

James, S. Low Choy, and K. Mengersen, unpublished

manuscript). Other models (E3) with expert-defined

priors include: Bayesian classification trees with elicita-

tion of rules for habitat suitability (O’Leary et al.

2008b), or Bayesian Networks with elicitation of a

hierarchy of relationships relating the probability of

presence to habitat factors (Smith et al. 2007).

By mathematical definition, the posterior balances

both prior information and knowledge gained from the

data, since very strong prior information can be down-

weighted by a weak likelihood based on the data, or vice

versa. Thus the distribution of the prior (E3) is an

important aspect of model formulation (E3). Conjugate

choices are popular and ensure the same distribution for

the prior and posterior, improving interpretability and

mathematical tractability (e.g., Pascual and Kareiva

1996). However care is required in specification of

conjugate priors, particularly of variance parameters

(Gelman 2006). Non-conjugate choices are also avail-

able and may more closely represent the information or

assumptions about the parameters of interest (e.g.,

Kadane 1990). Non-informative priors have minimal

contribution compared to the data; these include

Jeffreys’ priors (Jeffreys 1961) and objective priors

(Box and Tiao 1973). In this paper, we focus on

informative priors, which do convey some a priori

information about h.
Encoding methods (E4) underpinning elicitation can

be divided into direct and indirect approaches (Winkler

1967, Kadane 1980, Weber and Borcherding 1993)

(E4a). Direct approaches ask experts directly about

parameters in the model, so experts not only require

adequate statistical understanding of the role of

parameters in the underlying model, but their knowledge

should also be easily communicated in this way. This

‘‘analytic’’ approach suits experts who have analyzed

their knowledge in this way previously. In contrast,

indirect approaches take a more ‘‘holistic’’ approach by

asking experts only about what they have observed. This

typically involves asking experts to predict the response

given particular scenarios, e.g., in a regression for

known covariate values, or alternatively to impute

values of covariates corresponding to particular re-

sponses. Predictive elicitation may reduce motivational

biases (E5) since the expert is not necessarily aware of

the link between their answers and the encoded prior

distribution.

Encoding (E4) is the process of translating elicited

opinion into statistical statements (E3), and is therefore

highly dependent on the goal of elicitation (E2). A

plethora of encoding practices (e.g., O’Hagan et al.

2006) have been tailored to particular situations

(Kadane and Wolfson 1998). Common approaches elicit

quantiles at fixed probabilities or alternately elicit

probabilities of fixed quantiles (Spetzler and Staël von

Holstein 1975, O’Hagan 1998) (E4b). Hybrid methods

oscillate between these two approaches (Dickey and

Jiang 1998). Other summary statistics (E4b) may be

elicited, such as moments and the mode or changes to

estimates in light of hypothetical new information

(Winkler 1967). Once the summary statistics about the

unknown quantity h have been quantified using expert

knowledge (E4b), then it is necessary to estimate the

prior distribution about h (E4d). In most cases

additional information about expert uncertainty is

required, such as the equivalent sample size (Winkler

1967) of their knowledge (E4e), in order to estimate the

variance of prior distributions with more than two

parameters.

Elicitation is potentially subject to several sources of

uncertainty (E5), including biases, being conscious and

PLATE 1. Young male brush-tailed rock-wallaby at home on
steep sedimentary escarpment in northeast New South Wales,
Australia. Experts were asked to assess their probability of
presence in different environments, which was formulated as a
prior distribution for input into a Bayesian habitat model.
Photo credit: Justine Murray.
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subconscious discrepancies between the subject’s responses

and an accurate description of his underlying knowledge

(Spetzler and Staël von Holstein 1975). Accurate

elicitation can be managed before elicitation, via design,

or after elicitation, via verification. Experts can be

conditioned to be aware of common biases so that they

are more easily avoided (E5b). These include: displace-

ment bias when experts over- or underestimate; vari-

ability bias or conservatism where typically experts

underestimate the variability in the quantity of interest;

and motivational biases due to the expert’s lack of

neutrality (Spetzler and Staël von Holstein 1975,

Tversky and Kahneman 1981).

Cognitive biases attributable to misunderstanding

what is required can also be managed via design of

elicitation. Biases where experts anchor or adjust

estimates with respect to available values (Tversky and

Kahneman 1974) can be minimized by choosing the

order of questions (E5c) (Garthwaite and Dickey 1985,

Phillips and Wisbey 1993). Representativeness bias

occurs when the probability of an event is confused

with its representativeness or similarity to some major

characteristic in the population, e.g., confusing variabil-

ity in the population with accuracy of the average

(Kahneman and Tversky 1972). This can be reduced by

structuring the elicitation to avoid tacit conditioning on

other quantities (E5c) (Spetzler and Staël von Holstein

1975). Tacit assumptions are often involved when

experts estimate extreme probabilities near zero or one

(Siu and Kelly 1998). These may arise from implicit

conditioning or other representativeness biases. These

biases may be minimized by asking experts to list

reasons for elicited probabilities, especially extremely

high or low values (E5c, E4c) (Kynn 2008).

Verification of elicited quantities can be achieved

using various methods (E5e). The use of technology

(E6e) can help avoid coherence biases by automatically

checking and alerting for logical inconsistencies (E5c,

E5e) (Kadane and Wolfson 1998). Feedback is useful for

helping experts maintain self-consistency (E5c, E5e)

(Spetzler and Staël von Holstein 1975, Kynn 2006).

Calibration, where expert estimates are compared to

actual results (Dawid 1982, Gneiting and Raftery 2007),

can be immaterial if it is accepted that ‘‘what is being

elicited is expert, not perfect, opinions, and thus they

should not be adjusted’’ (Kadane and Wolfson 1998), or

that expert knowledge captures information not ade-

quately represented by observed data (E5e). Using

different encoding techniques, and then comparing or

combining prior or posterior models, may also improve

accuracy (E5d, E5e) (Gavasakar 1988, Accad et al. 2005,

Denham and Mengersen 2007, O’Leary et al. 2008a).

Questioning multiple experts can lead to more repre-

sentative results (E5a), although Clemen and Winkler

(1999) caution that in some cases groups may only

marginally outperform individuals, and the ‘‘best’’

experts may outperform the group (E5d, E5e).

Information elicited can be affected by how the

elicitor communicates what is required, and how the

expert communicates their knowledge. Thus exact

wording of questions should be selected carefully, and

define clearly and precisely what is required, minimizing

ambiguity (E5b, E4c). In particular questions should

refer to units and scales familiar to the expert (Spetzler

and Staël von Holstein 1975) (E4c). Where possible it is

advisable to refer to frequencies instead of probabilities

as these are generally more accurately elicited (Kynn

2008: Recommendations 4,6). This has promoted

investigation of visual and interactive approaches

(Kadane et al. 1980, Kynn 2006; Appendix) (E4c).

Reporting an elicitation protocol (E6), like a survey

protocol, ensures a transparent, repeatable and therefore

scientifically justifiable process. Such details facilitate

quality control and enable peer review, both essential for

a robust process (E5e). The protocol should detail

elicitation design especially major issues of practical

implementation and logistical decisions, including expert

selection, delivery, efficiency, and preparation. Motiva-

tional and selection biases are often unavoidable, but

can be managed if known. Selection of experts impacts

on representativeness, accuracy and credibility of

elicited opinions (E6a). Pooling expert opinion, or

hierarchical models such as meta-analysis, can be used

to reweight expert opinions when combined (Clemen

and Winkler 1999) (E6b).

Adequate preparation (E6d) contributes greatly to

consistency and reliability of elicited quantities, and

should include motivating experts to participate with

diligence, training them in relevant concepts (Kynn

2008: Recommendation (1) including a ‘‘dry run’’ of

elicitation, and conditioning them to potential biases

(E5b). In addition experts may be prepared by gathering

and listing all potential sources of expertise (experience,

literature, and so on), which can help reduce availability

bias, being the tendency to recall recent or important

information (Tversky and Kahneman 1973). The deliv-

ery (E6c) of elicitation should be tailored to the experts

and logistical constraints, and can range from a

questionnaire (either by interview or post) to technolo-

gy-assisted delivery (O’Leary et al. 2008a) (E6e). For

more details on software tools see the Appendix. Overall

the elicitation process should minimize effort required

by the expert to reduce potential for fatigue and

therefore inaccuracy (E5c) (Spetzler and Staël von

Holstein 1975).

ELICITATION IN ECOLOGY

In a recent review of 11 major ecological journals

during 1996–2003, Ellison (2004) found 69 articles

utilizing Bayesian statistical methods. Of these, 25 used

informative priors (e.g., Anholt et al. 2000, Fleischman

and Burwen 2003, Wintle et al. 2003), which tended to

be based on information from previous studies rather

than elicitation of expert opinion. When elicitation was

used, the methodology for deriving expert knowledge
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was not necessarily reported (e.g., Taylor et al. 1996,

Cheng and Chen 2005, Clark et al. 2005, Fuentes et al.

2006). More generally there are few examples of

designed elicitation applied in ecology (e.g., Link and

Sauer 1996, Garthwaite and O’Hagan 2000, McCarthy

and Masters 2005, Hahn 2006). In this paper, we

consider two examples which have been reported in

some depth (Crome et al. 1996, Borsuk 2004), and

describe their elicitation design using the framework

described above. We then undertake more detailed

assessment for three examples from our experience.

Crome et al. (1996) undertook both traditional

frequentist and Bayesian analyses (E1) to assess the

impact of logging on species counts based on data

obtained using a Before-After-Control Impact-Pairs

(BACIP) design. In the Bayesian analysis, posterior

probabilities of scenarios were linked directly to

management actions (E1). Stated advantages of the

Bayesian approach included: scientific relevance, by

avoiding questions of ‘‘Is the logging effect zero?’’ in

favor of ‘‘Is the effect large enough to influence my

scientific or personal beliefs or management aims?’’ (E1);

a focus on reporting uncertainty in model parameters;

and the ability to include subjective probabilities about

individual events (E2).

The direct elicitation approach (E4a) used by Crome

et al. (1996) assumed that experts familiar with

interpreting BACIP results (E3) would also be able to

express their ecological knowledge in terms of an effect

size for logging (E2). The authors investigated the

impact of various polarized beliefs embodied in four

different prior distributions (E5d), with the aim of

determining whether the posterior model led to consen-

sus between prior knowledge and observed data (E1,

E6b). This focus on whether data agree with experts

differs subtly from the usual focus of many informative

Bayesian studies, on whether the prior has added

information to the data (E6b).

Fractiles of the expected impact of logging on species

(E4b, E2) were elicited from 15 experts (E5a, E6a), via

interview based on a standard questionnaire (E6c).

Questions addressed variable intervals (E4a) for the

three quartiles, e.g., the median was sought using (E4c)

‘‘Choose a level of impact (percentage increase or

decrease) so that there is a 50% chance that the effect

will be below this level.’’ The possible range and outer

quantiles (E5c) were also elicited (E4e). Elicitors felt that

experts preferred quartiles to be elicited explicitly (e.g.,

asking for level exceeded by 25% of cases) rather than

via bisection (i.e., conditioning on the median) (E4b).

Fractiles were analyzed using principal components

(E4d) to identify three experts (E6a) considered repre-

sentative of the most divergent views (E6b, E5a):

pessimistic (conservationist), indifferent (lay person),

and optimistic (logging industry). The fractiles for these

three experts (E4b) were then used to encode the effect

of logging on species counts in logged areas as a two

component mixture of lognormal distributions (E3),

using nonlinear least squares (E4d). Both priors and

posteriors were compared arising from Bayesian analy-

ses, using non-informative priors or informative priors

from each class of opinion. Prior opinion was effectively

weighted according to the uncertainty of each exemplar

expert, as reflected by variance of encoded lognormal

mixtures given elicited fractiles (E4e). Summary statis-

tics based on posteriors of ranges of logging effects,

based on each type of expert, defined decision rules for

proscribing management actions (E1).

A second example is given by Borsuk (2004), who was

motivated to use a Bayesian approach due to the

difficulty in accurately characterizing, using process

models (E1), ‘‘how improvements in oxygen conditions

will improve the health of fish and reduce the frequency

of fish kills’’ (E2). Modeling focused on management

requirements rather than improvement of mechanistic

understanding (E1). We examine the approach taken on

the first of two different models reflecting theories and

evidence regarding the underlying processes and causal

factors for fish kills (E2). Modeling was decomposed

into three main steps: modeling fish population health,

incidence of fish kills depending on population health

and other factors, and integrating these two models into

an overall model (E3). Expert opinion was required to

parameterize the first level of modeling for input into the

overall model (E2).

For the first step, expert opinion was sought on (E4a)

‘‘the aggregate relationship between fish population

health and the annual extent of low oxygen bottom

water’’ in summertime for a varying number of days

(E2). Elicitations followed model decomposition into a

hierarchical model (E3). Categories of population

response (fish population health) were carefully defined

in consultation with experts and determined to depend

on two defining attributes being extent of visible disease

and growth rates (E3, E4b). The probability of these fish

population categories (E4b), for different numbers of

hypoxic days, were elicited from experts, providing an

indirect approach of determining the differential effect

of hypoxic days at different population levels (E4a).

These were based on published thresholds of tolerance

of fish to hypoxia (E6a). Questions asked were similar

to: ‘‘Given a summer in which bottom water oxygen

concentration (depth greater than 1.5 meters) in the mid-

channel of the Neuse Estuary averages less than 2.0

mg/L for 10 out of 92 days in July, August, and

September, what is the probability that fish population

health at the end of the summer can be characterized as

excellent? good? poor?’’ (E4c).

A consensus approach (E6c, E4e) to combining expert

opinion (E5a) was undertaken, accounting for impreci-

sion in both estimated value and range of expert

opinions (E5). Prior estimates were obtained by fitting

a cumulative logit regression model (E3) via maximum

likelihood to the elicited responses, with known covar-

iates, using the proportional odds assumption (E4d).

Imprecision on estimates was encoded by using an
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aggregate estimate of the effective sample size relevant

to the multinomial distribution of responses (E4e, E4d).

Other modeling assumptions were tested, including a

latent trait formulation and alternative link functions

(E5d). Model predictions were then expressed in a form

more closely reflecting original definitions (E6c, E5e),

based on thresholds provided by experts (E2) (Borsuk

2004: Fig. 2).

Our experiences in expert elicitation cover a range of

ecological topics, environmental management objec-

tives, elicitation techniques, and statistical models. We

undertake more detailed assessment (especially regard-

ing E5 and E6) for three examples from our experience.

Case A.—Setting and evaluating vegetation condition

benchmarks, by balancing misclassification rates and

eliciting statistical distributions (Low Choy et al. 2005)

Case B.—Subregionalization of terrestrial bioregions

via a finite mixture of multivariate Gaussian distribu-

tions, using elicitation of latent mixture allocation

(Pullar et al. 2004, Accad et al. 2005).

Case C.—Modeling habitat suitability or predicting

species distributions, via logistic regression, with infor-

mative priors imputed from elicitation of predicted

presence/absence case-by-case (e.g., site-by-site) for

specific habitats (Denham and Mengersen 2007,

O’Leary et al. 2008a; A. James, S. Low Choy, and K.

Mengersen, unpublished manuscript).

Vegetation benchmarking

Motivation (E1).—Vegetation management often

requires identification of ‘‘benchmark’’ sites in ‘‘refer-

ence’’ or optimal natural condition (Eyre et al. 2006)

(E1). Condition is usually described in terms of maturity

and disturbance, with measurement of indicators such as

density of large trees or fallen woody debris. Typically,

however, data on these indicators are available for few

of the vegetation types of interest. For these vegetation

types, Bayesian regression can set appropriate bench-

marks within a decision analysis framework (Low Choy

et al. 2005). However, for remaining types with no

available data, expert knowledge is the sole source of

information (E1). Elicitation within a Bayesian frame-

work ensures that expert-derived benchmarks can later

be combined with data, when available, and also guide

design of monitoring (E1, E6b).

Specification of expert knowledge (E2).—Given an

indicator of vegetation condition, Y , a benchmark was

desired, such that the ‘‘best’’ sites in reference condition

would score above this benchmark, degraded sites would

score below this benchmark down to an effective score

of zero, and intermediate sites would score somewhere

between these two levels (E1).

A naive one-step approach would involve setting the

benchmark at a level considered by experts (E2) to

represent the median condition Ỹi evaluated across a set

of sites i in reference condition i 2 R (E4a, E3). There are

two difficulties with this approach. First, it confounds

the elicitation of ecological knowledge with the decision-

making process (E2), so is open to motivational biases

(E6a). Some scientists can be more conservative than

others, specifying a higher benchmark to avoid mistak-

enly capturing sites in degraded condition. Other experts

could desire a more inclusive benchmark to maximize

the chance of capturing all sites in reference condition

(E5c). Second, specifying a benchmark, based only on

sites in reference condition, leads to implicit and

potentially inappropriate conditioning biases by indi-

vidual experts (E5b).

Since the benchmark is to be used to discriminate

between sites in reference and degraded condition, it

should explicitly account for some baseline level of

degraded condition (E2). Such a baseline would enable

assessment of misclassification rates, being the potential

to misclassify degraded sites as being in reference

condition, and vice versa (E1). The problem was

therefore decomposed into two stages (E3) to allow

indirect assessment of the benchmark (E4a): first

describe the range of indicator values Y for different

levels of condition Z (both reference and degraded)

(E4b); and then assess misclassification rates (E4b).

Statistical formulation (E3).—A categorical variable

Zi ¼ k indicates known condition at site i is at level k,

including the two extremes of degraded k ¼ 1 and

reference k¼K condition (E3). For a hypothetical set of

sites considered to be in degraded condition Zi ¼ 1, the

expert can be asked to describe the expected range of

values p(Yi jZi¼1) for an indicator Yi (E3, E2). This can

be repeated for sites in reference condition Zi¼K, and at

intermediate levels of condition 1 , Zi , K (E4b). This

model provides a basis for estimating the probability

that sites exceed a potential benchmark T within each

category k of condition ak ¼ p(Yi . T jZi ¼ k) (E4d).

Then the true positive rate TPR ¼ aK is the correct

classification rate for reference sites, and the false

positive rate FPR ¼ a1 is the misclassification rate of

degraded sites. Of interest are the FPR and FNR, which

is the false negative rate and simply calculated as FNR¼
1� TPR. Depending on the decision-making context, a

threshold T can be selected to minimize one or more

misclassification rates (E3, E5c). For example environ-

mental managers may desire a neutral decision (E2),

which requires simultaneous minimization of both FPR

and FNR, if the cost of each error is comparable (Low

Choy et al. 2005) (E4d).

Encoding (E4).—Specifically, experts may be asked

for a series of fractiles from which to impute the

distribution of indicator values at each level of condition

p(Yi jZi¼ k) (e.g., O’Hagan et al. 2006) (E4b). The most

extreme fractiles should be elicited first to ensure the

expert does not inadvertently constrain themselves too

narrowly to their median or modal estimate of the

indicator. This approach has been shown to minimize

anchoring as a source of bias (e.g., Spetzler and Staël

von Holstein 1975) (E5c). First key concepts were

defined, such as ‘‘site,’’ ‘‘study area,’’ ‘‘reference condi-

tion,’’ and each indicator (E6d). Questions targeting
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quantiles were asked in terms of frequencies rather than

probabilities to improve accuracy (Kynn 2008) (E4c)

‘‘Imagine 100 sites within the study area that are in

reference condition. What is the lowest possible value of

the attribute you would expect at any of these sites?

[You would be surprised if more than one in a hundred

sites scored lower.] What attribute value would be

exceeded by only two or three sites in 100? . . .’’

For a normal or lognormal distribution, two quantiles

can be related algebraically either on the unlogged or

logged scale (E4d) to the mean and variance, via

straightforward arithmetic (e.g., Garthwaite and O’Ha-

gan 2000, Low Choy et al. 2008). Numerical approaches

may be required to encode parameters for other

distributional choices (e.g., Léon et al. 2003) (E4d).

Protocol (E6).—The design required a simple low-

technology implementation, to enable elicitation by

elicitors with limited statistical expertise, in remote areas

with little computing facilities, consistently across

various experts and elicitors (E6e). Thus a simple

questionnaire was designed (E6c), with results that

could be encoded in a spreadsheet to enable some

graphical feedback (E4c). A boxplot was used for

graphical representation, and some basic training in

interpreting the boxplot was devised (E4c, E6d). Joint

presentation of introductory and training materials

could be made at annual Technical Advisory Panel

meetings (E6c). Training included examination of a well-

understood indicator in a wider group, with thorough

discussion revising definitions of concepts, both ecolog-

ical and statistical. Pilot studies validated the questions

in the questionnaire (E5c). Verbal, tabular and graphical

representations were provided to support elicitation as

well as feedback (E5c, E4c). Consistency within and

between individual experts (E5a) was improved via

comparison of boxplots describing the range for a

vegetation condition indicator, across different regional

ecosystems (E5c).

Bioregionalization

Motivation and specification of expert knowledge (E1,

E2).—Environmental management has historically been

managed through identification of ecoregions or bio-

regions, being areas that share common broad scale

geographical attributes such as geology and climate.

Bioregionalization has traditionally relied on experts to

integrate a large source of material to delineate

acceptable boundaries around bioregions (E2). Experts

refer to many sources of information, including their

own experiences from fieldwork or conceptual knowl-

edge (E6a). In synthesizing this information experts

must refer to multiple indicators of landscape processes,

then prioritize those driving delineation of each bound-

ary (E2). Expert panels have become a common

mechanism to achieve this (Neldner 2006) (E6c).

Two sources of available data were considered for

constructing a prior in Rochester et al. (2004): subre-

gional and bioregional boundaries agreed via consensus

of an expert panel; or an allocation suggested by another

regionalization method, such as hierarchical clustering,

applied to a different dataset (E2, E6a). For the case

study considered by Accad et al. (2005), two sources of

indirect prior information were expert-defined subre-

gional boundaries and presence/absence of two indicator

vegetation species.

Statistical model formulation (E3).—In contrast to

the usual data-mining approaches used for data-driven

bioregionalization (Mather and Doornkamp 1970, Hall

et al. 2002), a model is required to enable Bayesian

analysis combining data with expert knowledge (E1).

The Gaussian mixture model has been applied for data-

driven bioregionalization (e.g., Stepinski and Vilalta

2005) using non-informative priors (E2) and empirical

Bayes for computation (Cheeseman and Stutz 1996).

Here we consider the case where expert knowledge has

been incorporated as informative priors (E1, E2), with

full Bayesian inference via Markov Chain Monte Carlo

estimation (Rochester et al. 2004, Accad et al. 2005)

(E4d). Informative priors not only provide a mechanism

for incorporating expert knowledge (E2), but for

mixture models they ensure proper priors to avoid

numerical difficulties (Hobert and Casella 1996) (E4d).

Several covariates yi1, . . . , yiJ representing landscape

characteristics j¼ 1, . . . , J can be used to classify sites i¼
1, . . . , n into environmental envelopes k ¼ 1, . . . , K.

Envelopes can be mapped to geographic regions where

sites are allocated according to zi ¼ k (Rochester et al.

2004). The multivariate Gaussian finite mixture model

can be expressed as a two-level hierarchical model (e.g.,

Fraley and Raftery 1999). At the first level, each site i is

allocated to region zi¼ k, with probability wk¼ p(zi¼ k).

At the second level, a separate Gaussian distribution

/(hk) describes the environmental envelope in each of

the k ¼ 1, . . . , K regions, with parameters lk, Rk:

pðyjw; l;RÞ;
XK

k¼1

wk/

�
yjlk;Rk

�
: ð2Þ

To satisfy the independence assumption, sites were

selected via random sampling, with minimum distance

accounting for spatial autocorrelation, within each

region. For a Bayesian implementation (Lavine and

West 1992, Diebolt and Robert 1994) conjugate prior

distributions may be used, being a multivariate normal

for l, inverse Wishart for R, and Dirichlet for w.

Encoding (E4).—Prior information on regionaliza-

tions would be difficult to elicit structurally, due to the

dimension and complexity of parameters l, w, and

especially R (E4a). However predictive elicitation is

easily applied here since, by defining boundaries, experts

have essentially designated a ‘‘hard’’ allocation of each

site i to a single region k, via z
ð0Þ
i ¼ k

n o
. This in turn

defines prior estimates:

w
ð0Þ
k ¼

1

n

X

i

I z
ð0Þ
i ¼ k

h i
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(E4a, E2). A discriminant analysis (Fraley and Raftery

1999) can be used to fit a multivariate normal

distribution to each region to obtain estimates of

regional means, estimated via

lð0Þjk ¼ w
ð0Þ
k

X

i:z
ð0Þ
i ¼k

y
i;j

and similarly prior variances Rð0Þk (E4d). The degrees of

freedom for priors for lk and Rk reflected the effective

sample sizes or expert confidence in their opinions (E4e).

The impact of changing the effective sample sizes for

expert knowledge could be visualized by experts by

mapping (E4c) posterior estimates of bioregions fzig,
with a separate map showing uncertainty (Accad et al.

2005) (E5d, E6b).

Protocol (E6).—Expert opinion on bioregional

boundaries is generally decided via consensus (E4c,

E6b) at meetings (E6c) held a few times a year (e.g.,

Neldner et al. 2004), with information at hand on

vegetation survey results, reports, and hardcopy maps

on various themes ranging from topography to geology

and climate (E6a). Experts are selected (E6a, E5a), and

expert-defined boundaries verified, via a rigorous and

well-accepted process (e.g., Neldner et al. 2004) (E5). In

addition, experts involved in the informative Bayesian

modeling exercise were asked to verify encoding of

expert knowledge through visualisation of the envelopes

representing the range of environmental attributes,

defined by the mixture model parameters lk and Rk,

within each expert-defined subregion (E4c, E5e). An

integrated geographic information system (GIS) and

other modeling tools were developed to support

modeling and provide feedback in the form of maps,

in both cases (E5c, E6e).

Habitat models: interactive predictive elicitation

Motivation (E1).—Experts may be unable to under-

take the difficult elicitation task of estimating regression

coefficients (Martin et al. 2005). Yet knowing the habitat

at a hypothetical site, experts are often able to assess

ecological response such as probability of presence or

relative abundance (E2). This indirect elicitation ap-

proach is well suited to complex regressions, and to

cases where experts have field-based practical knowledge

rather than theoretical abstract knowledge (Denham

and Mengersen 2007). Here we discuss indirect elicita-

tion for logistic regression for habitat modeling (E1). We

discuss a prototype elicitation tool and its successor,

which were both applied to elicitation of habitat

requirements of the Australian endangered brush-tailed

wallaby (Petrogale pennicillata; see Plate 1). The

prototype elicited opinions of just two experts (Denham

and Mengersen 2007, O’Leary et al. 2008b), while its

successor undertook more thorough elicitation from

nine different experts (J. V. Murray, R. W. Goldizen,

R. A. O’Leary, C. A. McAlpine, H. P. Possingham,

and S. J. Low Choy, unpublished manuscript).

Specification of expert knowledge (E2).—Denham

and Mengersen (2007) elicit predicted probability at

sites, using a map-based interface to show habitat

covariates and other contextual information (E4a). They

extend the predictive elicitation approach for normal

regression (Kadane et al. 1980) and logistic regression

(Chen et al. 1999), taking advantage of spatial contex-

tual information (Craig et al. 1998). It differs from other

elicitation techniques for habitat modeling via regression

outlined in the description of E2. This approach has

been modified (A. James, S. Low Choy, and K.

Mengersen, unpublished manuscript) to follow the

conditional mean prior approach of Bedrick et al.

(1996).

Statistical formulation (E3).—Let Yi ¼ 1 denote an

observed presence at site i and Yi¼0 denote an observed

absence. Denote by xij the jth covariate (e.g., habitat

factor, environmental gradient) measured at site i. The

logistic regression of response y on covariates x involves

unknown coefficients bj corresponding to the jth

covariate:

yi ;
iid

BernðliÞ

where

logitðliÞ ¼ b0 þ
X

j

xijbj: ð3Þ

Normal priors b ; N(b, R) are typically used (Gelman et

al. 2004) with full covariance structure R (Denham and

Mengersen 2007) or independent variances R ¼ dia-

g(e2
1,e

2
J) in the absence of collinearity (A. James, S. Low

Choy, and K. Mengersen, unpublished manuscript).

Similar to Bedrick et al. (1996), experts are asked to

provide assessments Zm on conditional means lm, here
the probability of presence conditional on known

habitat. Quantities comprising Zm are elicited from

experts on the probability of presence at sites m¼ 1, . . . ,

M, with corresponding habitat covariates Xm. Hence,

Zm ;
iid

Betaðlm; cmÞ;

where

logitðlmÞ ¼ b0 þ
X

j

xmjbj: ð4Þ

Here the mean l and variance c are related to the

usual Beta shape and scale parameters a and b via l ¼
a/(a þ b) and c ¼ l(1 � l)q with q ¼ 1/(1 þ a þ b). We

may assume the same site-specific probabilities of

presence, and therefore the same coefficients b, apply
in both the data model (Eq. 3) and the prior model (Eq.

4) (Chen et al. 1999) (E3). Prior estimates of coefficients

b can then be obtained simply by applying the Beta

regression defined in Eq. 4 (E4d). Alternatively this may

be transformed to a Binomial regression (Denham and

Mengersen 2007) with the same l, but effective sample

size nm¼l(1� l)/cm (E4d). The design matrix X¼fxmjg
for the M elicitation sites can be preselected and
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therefore designed by the elicitor (A. James, S. Low

Choy, and K. Mengersen, unpublished manuscript) or

nominated by the expert (Denham and Mengersen 2007)

(E2). Elicitation at each site m implicitly conditions on

knowledge of J covariates that are measured at the site

and available for perusal (numerically or mapped) by

the expert (E2, E5b).

Encoding (E4).—The tool links (Denham and Men-

gersen 2007) or interfaces (A. James, S. Low Choy, and

K. Mengersen, unpublished manuscript) with a geograph-

ic information system (GIS), that can be used to map

(habitat) covariates across the study area or to query

covariate values (habitat profile) for particular sites

(E4c, E6e). Knowing the covariate profile at a site, the

expert provides the range of possible values for

predicted probability of presence at the site (E2), which

following Eq. 4 can be parameterized by a beta

distribution p(Zm jXm, am, bm) ; Beta(am, bm) (E3). To

achieve this, the expert may edit numeric estimates of

the Beta’s shape and scale parameters (am, bm) (E4d)

(Denham and Mengersen 2007) or quantiles (A. James,

S. Low Choy, and K. Mengersen, unpublished manu-

script) (E4d), or graphically manipulate a probability

density curve via its quartiles (Denham and Mengersen

2007) or a boxplot (A. James, S. Low Choy, and K.

Mengersen, unpublished manuscript) (E4c). A moment-

matching approach can be used to calculate the Beta

parameters corresponding to the median and upper

quartile (Denham and Mengersen 2007) (E4d), or a

numerical approach used to estimate the closest fitting

Beta parameters given the mode and two or four

quantiles (A. James, S. Low Choy, and K. Mengersen,

unpublished manuscript) (E4b).

Feedback can be instantly provided on the expert-

based prior model (E5e), showing the usual regression

diagnostics (E5c), providing an opportunity for reflec-

tion to ensure coherent and accurate estimates (E6e).

Elicitations or model diagnostics can be saved as

‘‘dynamic’’ graphical documents where interaction may

continue at a later time, or as purely static graphical

documents for reporting (E4c, E6e). This underlying

data management also supports: sensitivity analysis to

priors by supporting elicitation by the same expert in

different projects containing different sites (E5d), as well

as elicitation from multiple experts for the same or

different sites (E5a). Provision is made for recording

varying levels of confidence that an expert may have in

their assessments at each site, which may be used to

weight each site’s contribution to the prior distribution

(E4d). This hybrid approach oscillates between a

variable interval approach, eliciting quantiles of predict-

ed probability, and a fixed-interval approach, checking

the mode, tails and other quantiles of the encoded beta

distribution (E4b, E4d).

Protocol (E6).—The elicitation tools are designed to

accompany personal interview of a single expert by an

elicitor (E6c) and can be run from desktop (Denham and

Mengersen 2007) or a laptop computer (A. James, S.

Low Choy, and K. Mengersen, unpublished manuscript)

(E6e). Interviews are more streamlined since the tool

manages many of the tedious aspects of interaction and

documentation (E5c, E6e).

DISCUSSION

The case studies presented above demonstrate that the

steps in the elicitation process (E1–6) provide a useful

overall description of elicitation design. They also show

that these steps cannot simply be followed in a linear

fashion, since many are interrelated. We have distilled

eight key issues of relevance to designing elicitation in

ecology contexts:

1) A major motivation for using expert opinion is

that it is an important source of information for

ecological models.

2) Relevant and accurate prior models target avail-

able expert knowledge.

3) Problem decomposition, leading to hierarchical

model representations, in the statistical formula-

tion phase facilitates incorporation of expert

knowledge as informative priors.

4) Indirect rather than direct elicitation can be more

effective and control biases in many situations.

5) Communication styles that target various styles of

thinking used by ecologists lead to more effective

and accurate elicitation.

6) Technology can be harnessed to provide an

interactive environment and feedback to better

facilitate and streamline elicitation.

7) Assessing informativeness of priors and their

impact on model performance is important for

understanding and evaluating model outputs.

8) Expert panels can provide a useful mechanism for

facilitating elicitation in ecology.

These points are related to the five documented by

Kadane and Wolfson (1998 [their points a–e]) and

overlap with four recommendations of Kynn (2008). We

address each point here.

Motivation (E1) for an informative Bayesian analysis

varied among the cases studied. Immediate interim

results were required where expert knowledge was the

only source of information (Borsuk 2004; case A) or the

best source since spatial data sets were not of consistent

resolution and accuracy across the study area (cases B

and C). Hence in these cases expert knowledge was the

‘‘most worthwhile to elicit’’ (Kadane and Wolfson 1998

[their point a]). This illustrates the importance of expert

knowledge for similar ecological contexts (point 1).

The process of identifying relevant and available

expert knowledge (E2) generally revealed useful options

that depended on model formulation (point 2). For

assessing vegetation condition (case A), it was crucial to

recognize that it was problematic to ask experts to

directly set a benchmark, yet easier to ask them to

describe the distribution of attributes under varying

levels of condition. Targeting the most influential factors
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for modeling simplified elicitation and also allowed

stochastic variation to summarize the effects of finer

scale processes (Borsuk 2004). Utilizing a mixture

model, together with indirect elicitation that predicted

site allocation by specifying boundaries, provided a

natural way to target and incorporate expert knowledge

compared to the more popular data mining approaches

(case B). For habitat modeling (case C), elicitation was

simplified by acknowledging that ecologists, particularly

those with substantial field experience, find it easy to

predict probabilities of species occurrence at sites with

mappable habitat characteristics. In these cases, decom-

position of the model (point 3, E3) provided a more

targeted, less complex and more accessible basis for

elicitation (Spetzler and Staël von Holstein 1975), so

that elicitation tasks would be ‘‘as ‘small’ and distinct as

possible’’ (Kynn 2008; recommendation 5). See the

Appendix for details on some elicitation tools.

Model decomposition (point 3) requires some

thought, but naturally results in specification of

hierarchical models, as demonstrated by all case studies.

To simplify elicitation and encoding, however, generally

required a little extra complexity in statistical formula-

tion and therefore estimation. This complexity took

different forms: a hierarchical ‘‘prior’’ standalone model

comprising three levels of dependencies (Borsuk 2004);

an additional step in the Bayesian learning cycle where

priors were the result of analysis of preliminary data

elicited from experts (cases C and B); a decision analysis

applied to the prior model to balance misclassification

error rates (case A) or applied to the posterior to guide

management actions (Crome et al. 1996).

When experts were familiar with the modeling

framework, expert knowledge was sought directly via a

structural approach for eliciting parameters in the model

(Crome et al. 1996) (E4a). However in the four other

case studies, an indirect approach to elicitation was

found necessary or more appropriate (point 4), support-

ing the fourth conclusion presented by Kadane and

Wolfson (1998 [their Discussion section]). Indirect

encoding enabled transformation of existing expert

knowledge on boundaries between regions into suitable

priors on properties of regions (case B). Expert

knowledge was targeted more accurately by asking

experts to assess ecological response for given covariate

values (Borsuk 2004; case studies A and C). In these

cases, elicitation was designed to target expert knowl-

edge and be more easily understood, thus lowering

cognitive biases and reducing the need for ‘‘mental

gymnastics’’ (Spetzler and Staël von Holstein 1975,

Kynn 2008: recommendation 5). This was achieved by

asking the expert only about observable quantities

(Kadane and Wolfson 1998 [their point b]), keeping

questions more concrete than abstract.

Feedback helps experts maintain self-consistency,

explore their own knowledge (not often expressed so

precisely) and therefore greatly reduce cognitive biases

(point 6). Although agreeing with Kadane and Wolfson

(1998 [their point d]) that frequent feedback be

provided, we extend this to recommend that a variety

of communication styles be used to suit the varying

learning and thinking styles of experts (point 5). Experts

with aural and oral thinking styles are helped by

discussion with the elicitor, and those with abstract

thinking by providing concrete numeric information (all

cases). Visual thinking is supported via feedback

through graphs (cases A–C) and maps (B and C) (Kynn

2008: recommendation 9), particularly for validation of

elicited prior models. Kinetic thinking is supported by

interactive feedback, particularly with technology assis-

tance (C).

Predictive elicitation tools for regression (case C)

exemplify interactive graphical and map-based systems

of elicitation, permitting hybrid approaches to encoding.

These tools have many benefits for the elicitation process

(point 6). They can educate the user about statistical

concepts and models. For example, the tool in case C

educates by dynamically showing the link between a

probability density (Beta distribution for elicited re-

sponse), its quantiles, and parameters (numbers); by

revealing the link between data elicited site-by-site

(elicited information) and the model (species response

curves); and by demonstrating the use of regression

diagnostics in a way that relates directly to the expert’s

knowledge. With modern technology, the frequent

feedback found desirable by Kadane and Wolfson

(1998 [their point d]) can be semi-automated and

provided interactively. Moreover an interactive environ-

ment greatly assisted experts in these case studies to

reflect, refine (Kynn 2008: recommendation 9) and

provide coherent and accurate estimates. The ability to

revisit and adjust estimates substantially reduced pres-

sure on experts. This interaction can be supported by

linking to geographic information systems (GIS) (B and

C), using a software tool (C), or by spreadsheets (A).

Dynamic linking of graphs representing elicited infor-

mation, feedback and prior models also assist experts

(C). Technology provides a useful means of undertaking

tedious or repetitive tasks, therefore minimizing error

(by elicitors or experts), also noted by (Kynn 2008:

recommendation 5).

Little research has compared the impact or informa-

tiveness of priors (point 7) obtained using different

expert elicitation techniques (e.g., Gavasakar 1988,

O’Leary et al. 2008a). In contrast to many non- or

weakly informative Bayesian analyses, in all of these

case studies the observed data do not provide the

baseline for comparing sensitivity of model outputs to

prior assumptions. Rather, in many cases (Borsuk 2004;

A–C) prior information establishes a baseline for

assessing the impact of additional observed data, when

they become available (e.g., Bernardo 2006, Bousquet

2008). Midway between these two extremes, one case

(Crome et al. 1996) focuses on agreement between prior

information and data. In case B, stakeholders found it

useful to visualize how changing the weight (effective
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sample size) of prior information impacted on predic-

tions (mapped boundaries).

Expert elicitation can take advantage of well-devel-

oped and existing mechanisms in ecology for more

general expert consultation (point 8), an advantage since

a familiar context greatly facilitates elicitation (Kynn

2008: recommendation 4). In our experience (A–C),

expert panels were used either as the mechanism for

implementing the elicitation (A and B) or as the

mechanism for identifying and enlisting experts (C).

The logistical and scientific benefits of these mechanisms

should not be underestimated; in many cases ensuring

the correct balance of expert opinion (E6b) is as

important as any other factor for the perceived and

actual validity of resulting estimates. Ecological experts

are familiar with designing processes to minimize

motivational biases, such as large group consultation

(A–C). In many cases, expert panels, or subsets of expert

panels, provide a convenient means of delivering

training (E6d), providing an ideal setting for condition-

ing experts to potential biases (Kynn 2008) (E5b),

refining definitions (B), developing shared understanding

of ecological and statistical concepts, and demonstrating

the elicitation process (A), including a calibration

exercise (E5e) (A and C) (Hamilton et al. 2005).

This paper illustrates the value of informative

Bayesian statistical analyses for ecological applications,

through detailed discussion and comparison of five case

studies. We have proposed and validated a six-step

process for designing expert elicitation that may be

applied in various ecological contexts. Case studies

revealed several issues of particular importance when

designing elicitation in ecology, often resonating with

previous research. This paper contributes to ongoing

research into the relative merits of various elicitation

approaches, and revisits the principles of successful

elicitation in a modern context.
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Elicitation of expert opinion in benefit transfer of environ-
mental goods. Environmental and Resource Economics 26:
199–210.

Lindley, D. V. 2000. Philosophy of statistics. Statistician 49(3):
293–337.

Link, W. A., and J. R. Sauer. 1996. Extremes in ecology:
avoiding the misleading effects of sampling variation in
summary analyses. Ecology 77:1633–1640.

Low Choy, S., K. Mengersen, and J. Rousseau. 2008. Encoding
expert opinion on skewed non-negative distributions. Journal
of Probability and Statistics 3(1):1–21.

Low Choy, S., B. Stewart-Koster, A. Kelly, T. Eyre, and K. M.
Mengersen. 2005. Identifying good condition in native
vegetation: a Bayesian regression and decision theoretic
approach. Pages 435–441 in A. Zerger and R. M. Argent,
editors. MODSIM 2005 International Congress on Model-
ling and Simulation. Modelling and Simulation Society of
Australia and New Zealand, Canberra, Australia.

Martin, T. G., P. M. Kuhnert, K. Mengersen, and H. P.
Possingham. 2005. The power of expert opinion in ecological
models: a Bayesian approach examining the impact of
livestock grazing on birds. Ecological Applications 15:
266–280.

SAMANTHA LOW CHOY ET AL.276 Ecology, Vol. 90, No. 1



Mather, P. M., and J. C. Doornkamp. 1970. Clustering
multivariate analysis in geography with particular reference
to drainage-basin morphometry. Transactions of the Institute
of British Geographers 51:163–187.

McCarthy, M. A., and P. Masters. 2005. Profiting from prior
information in Bayesian analyses of ecological data. Journal
of Applied Ecology 42:1012–1019.

Merritt, W. S., R. A. Letcher, and A. J. Jakeman. 2003. A
review of erosion and sediment transport models. Environ-
mental Modelling and Software 18:761–799.

Neldner, J. 2006. Why is vegetation condition important to
government? A case study from Queensland. Ecological
Management and Restoration 7:S5–S7.

Neldner, V. J., B. A. Wilson, E. J. Thompson, and H. A.
Dillewaard. 2004. Methodology for survey and mapping of
Regional Ecosystems and vegetation communities in Queens-
land. Version 3.0. Technical report. Queensland Herbarium,
Environmental Protection Agency, Brisbane, Australia.

O’Hagan, A. 1998. Eliciting expert beliefs in substantial
practical applications. Statistician 47:21–35.

O’Hagan, A., C. E. Buck, A. Daneshkhah, R. Eiser, P.
Garthwaite, D. Jenkinson, J. Oakley, and T. Rakow. 2006.
Uncertain judgements: eliciting experts’ probabilities. John
Wiley and Sons, New York, New York, USA.

O’Leary, R. A., S. J. Low Choy, K. Mengersen, M. Kynn,
P. M. Kuhnert, R. Denham, T. J. Martin, J. Murray, and
P. J. Jarman. 2008a. Comparison of expert elicitation
methods for logistic regression for presence of endangered
brush-tailed rock-wallaby Petrogale penicillata. Environmet-
rics. [doi: 10.1002/env.935]

O’Leary, R., J. Murray, S. Low Choy, and K. Mengersen.
2008b. Expert elicitation for bayesian classification trees.
Journal of Applied Probability and Statistics 3(1):95–106.

Pascual, M. A., and P. Kareiva. 1996. Predicting the outcome
of competition using experimental data: maximum likelihood
and Bayesian approaches. Ecology 77:337–349.

Pearce, J. L., K. Cherry, M. Drielsma, S. Ferrier, and G.
Whish. 2001. Incorporating expert opinion and fine-scale
vegetation mapping into statistical models of faunal distri-
bution. Journal of Applied Ecology 38:412–424.

Phillips, L. D., and S. J. Wisbey. 1993. The elicitation of
judgmental probability distributions from groups of experts:
a description of the methodology and records of seven formal
elicitation sessions held in 1991 and 1992. Report nss/r282.
Nirex UK, Didcot, UK.

Prato, T. 2005. Bayesian adaptive management of ecosystems.
Ecological Modelling 183:147–156.

Pullar, D., S. Low Choy, and W. Rochester. 2004. Ecoregion
classification using a Bayesian approach and model-based
clustering: expert elicitation using a spatial and graphical
tool. Pages 927–932 in C. Pahl-Wostl, S. Schmidt, A. E.
Rizzoli, and A. J. Jakeman, editors. Transactions of the
Second Biennial Meeting of the International Environmental
Modelling and Software Society, Volume 2. International
Environmental Modelling and Software Society (iEMSs),
Manno, Switzerland.

Reckhow, K. H. 1990. Bayesian inference in non-replicated
ecological studies. Ecology 71:2053–2059.

Renooij, S. 2001. Probability elicitation for belief networks:
issues to consider. Knowledge Engineering Reviews 16:
255–269.

Rochester, W., A. Accad, S. Low Choy, V. Neldner, D. Pullar,
and K. Williams. 2004. Final report UQ-EPA subregion
classification project. Technical report. The University of
Queensland, Brisbane, Australia.

Roloff, G. J., and B. J. Kernohan. 1999. Evaluating reliability
of habitat suitability index models. Wildlife Society Bulletin
27:973–985.

Shepherd, G. G., and C. W. Kirkwood. 1994. Managing the
judgmental probability elicitation process: a case study of
analyst/manager interaction. IEEE Transactions on Engi-
neering Management 41:414–425.

Siu, N., and D. Kelly. 1998. Bayesian parameter estimation in
probabilistic risk assessment. Reliability Engineering and
System Safety 62:89–116.

Smith, C. S., A. L. Howes, B. Price, and C. A. McAlpine. 2007.
Using a Bayesian belief network to predict suitable habitat of
an endangered mammal the Julia Creek dunnart (Sminthopsis
douglasi). Biological Conservation 139:333–347.

Spetzler, C. S., and C.-A. S. Staël von Holstein. 1975.
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APPENDIX

A table listing software for expert elicitation (Ecological Archives E090-017-A1).
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