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A cornerstone of biogeography is the recognition of the 
contribution of regional-scale processes such as disturbances, 
historical contingencies (e.g. macro evolutionary history or 
glaciations) and dispersal limitations to local community 
dynamics (Ricklefs 1987). The metacommunity concept 
has been proposed as a simple framework to link different 
spatial scales in ecology (Leibold et al. 2004). It emphasizes 
reciprocal feedbacks between local scale processes, such as 
competitive interactions and local adaptation, and regional 
scale processes such as dispersal, gene flow, and speciation. 
A central concept of metacommunity ecology is the idea 
that local communities are highly dynamic owing to colo-
nization events and local interaction, resulting in a spatial 
mosaic of assemblages sampled non-randomly from the 
regional species pool. As the concept matures there are new 
themes emerging, such as the investigation of evolution in 
metacommunities (Urban et al. 2008), and spatial food webs 
(Gravel et al. 2011, Massol et al. 2011). The field provides 
remarkable concepts and tools to build an integrated theory 
for biogeography.

Species distribution is also constrained by physiological 
requirements, which is at the core of the niche concept 
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Biogeography is concerned with the description of the 
distribution of biodiversity and understanding its underly-
ing processes. The discipline is central to the simulation 
of future scenarios of biodiversity under climate change 
(Thuiller et al. 2013). The extensive development of statis-
tical models of species distributions based on actual ranges 
and environmental data have provided valuable knowledge 
and predictions (Kearney and Porter 2004), but often 
remain purely correlative. There is now consensus that 
future developments in biogeography will require solving 
critical limitations of species distribution models (Kissling 
et al. 2012) and incorporating explicitly biotic interactions 
and dispersal (Lavergne et  al. 2010). This effort must be 
supported by theory in order to guide model development, 
maintain tractability and manage complexity. Developing 
a mechanistic theory of species distribution will require 
an integration of three fundamental principles and their 
interplay (Thuiller et al. 2013): 1) how local and regional 
dynamics are linked, 2) how species interact with the 
abiotic environment and 3) how they are embedded in a 
network of biotic interactions. Each of these principles are 
discussed in detail below.
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(Peterson 2011). The niche is usually defined as a 
N-dimensional environmental and resource hyper-volume 
within which a species is able to maintain a viable popula-
tion over the long term (Chase and Leibold 2003). Recent 
developments refined this definition based on demography 
and metapopulation dynamics (Holt and Barfield 2009). 
The abiotic niche, often referred as the Grinnelian niche, 
has been central to the development of species distribution 
models (SDMs, Jeschke and Strayer (2008)). Despite all of 
its criticisms, SDMs remain remarkably popular and opera-
tional for conservation ecology (Guisan et al. 2013). Recent 
attempts to improve the quantification of the niche include 
the addition of experimental assessments of the fundamental 
physiological constraints, as well as dispersal and proxies of 
biotic interactions (Boulangeat et al. 2012). The search for 
the most adequate set of environmental variables explaining 
diversity should be continued despite criticisms of the actual 
SDMs, and most of all must constitute a central principle of 
a general theory for biogeography.

Finally, species are not isolated, they are embedded 
within complex networks of ecological interactions. While 
interactions define community ecology, they are less infor-
mative for biogeography (Peterson 2003). Theory predicts 
that interactions in small community modules (2–4 species) 
should influence range limits (Gilman et al. 2010), but there 
is no extension to highly diverse communities. It has been 
hypothesized that factors determining distribution are hier-
archical, such that climate would govern the distribution at 
the regional scale while biotic interactions would be more 
important at the local scale (Araújo and Rozenfeld 2014). 
However an increasing number of studies emphasizes the 
role of local interactions as a major factor influencing geo-
graphical ranges (Gotelli et al. 2010, Jabot and Bascompte 
2012). The representation of interactions in a network is a 
convenient method to summarize the type and strength of 
interactions among species, their organization (Proulx et al. 
2005) and their consequences on dynamics (Allesina and 
Tang 2012). Food webs were first considered in the devel-
opment of a trophic theory of biogeography (Gravel et  al. 
2011), where it was shown that a diversity of interactions 
enhances persistence. Networks are however more than food 
webs and are rarely made of a single type of interaction (Kéfi 
et  al. 2012). Mutualism, competition and indirect effects 
(Wootton 1994), for instance, also impact local environ-
mental suitability (Godsoe and Harmon 2012). Tools and 
knowledge acquired through the study of local ecological 
networks, such as the community matrix and metrics of 
structure (Allesina and Tang 2012), must now be incorpo-
rated into a theory for biogeography.

These three principles should be all mixed together to 
provide an integrated assessment of their relative contribu-
tion to species distribution. To do so, the theory of island 
biogeography (hereafter referred as TIB) (MacArthur and 
Wilson 1967, Warren et  al. 2015) is a convenient start-
ing point. The TIB describes variations of species richness 
among islands as a dynamic equilibrium between two oppo-
site processes, colonization and extinction, directly linked 
with island characteristics. The TIB is a metaphor that 
goes beyond the intrinsic interest of islands; it serves as a 
first approximation to understanding the assembly of local 
communities embedded in a metacommunity context with 

straightforward species flux. The simplicity of the model and 
the relevance of its predictions demonstrate after more than 
50 yr since its publication it is still a useful tool in ecology 
and conservation (Cook et  al. 2002, Warren et  al. 2015). 
The TIB emphasizes the role of regional processes to local 
community assembly. Indeed it can be regarded as the sim-
plest representation of metacommunity dynamics (Leibold 
et  al. 2004). Furthermore, the model is easily expandable. 
Following (Holt 2010, Gravel et  al. 2011) introduced 
trophic interactions in the TIB (hereafter the trophic TIB, 
TTIB). Species interactions were found to be a key factor to 
understand species distributions, as the probability of find-
ing any species in a locality increases with the generality of 
its diet and decreases with trophic rank.

We propose to generalize the TIB by integrating the 
three principles described above. The TIB already explicitly 
includes the effect of regional processes (colonization and 
extinction dynamics) on local community assembly, and 
the TTIB includes predator–prey interactions. We extend 
this framework to all potential interactions, thus resulting 
in a general model of metacommunity dynamics, akin to 
the Lotka–Volterra equations for local community dynam-
ics. We also incorporate abiotic constraints on colonization 
and extinction dynamics. Hence we integrate the ingredients 
we believe are essential to model biodiversity distribution at 
the biogeographical scale. With this model in hand we then 
describe species distribution along environmental gradi-
ents. We use the mathematical formalism of Markov chains 
(Kemeny and Snell 1960, Black and McKane 2012) to 
derive expected assemblages and co-distribution at both the 
local and the regional scale. We illustrate how the interplay 
between biotic interactions and environmental requirements 
can affect the distribution of biodiversity over environmen-
tal gradients. Our results support the idea that the future 
research in biogeography require a consistent integration of 
several ecological concepts into a single framework to build 
promising approaches such as the switch from single-species 
distributions to community distributions.

The model

A simple probabilistic biogeographical model

The challenge of adding species interactions within the clas-
sical model of the TIB is gaining generality without losing 
simplicity. Following MacArthur and Wilson’s theory, we 
model the dynamics of occurrence probability of a species 
i in a local community. Species occurrence is the result of 
a balance between colonization and extinction dynamics, 
which occur at rates ci and ei respectively. Local species rich-
ness is given by the sum of occurrence probabilities over all 
species of the regional species pool, here simply defined as 
the set of all the N species whose propagules (as defined in 
Simberloff and Wilson 1969) can land on the island consid-
ered. The model thereby takes into account local (extinction) 
and regional (colonization) processes. More precisely, the 
dynamics of occurrence probability of species i, pi, follows:

dp
dt

c p e pi
i i i i  ( )1 	 (1)
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Here, ci and ei are constant and a property of species i. In this 
widespread version of the TIB, also called the linear version 
of the TIB (Schoener 2010), the equilibrium occurrence 

probability of a species i is given by p
c

e ci eq
i

i i
, 


. Also, 

species are assumed to be independent, therefore, the richness 
Seq is given by the sum of the N different pi,eq. The linear 
TIB can be modified to include trophic interactions (after 
Gravel et al. 2011) and we propose to extend it to all types of 
interactions. To reach that goal, the first step is to find a way 
to derive the expected species composition at any time. This 
composition can actually be depicted at any time by a vec-
tor of N zeroes and ones indicating, respectively, presences 
and absences of each species considered, these combinations 
will be referred as assemblages. Following MacArthur and 
Wilson, we use a stochastic modelling approach to describe 
the dynamics of assemblages. The simplest scenario is the 
one species case. Here there are only two assemblages for the 
locality: one with species i present and the other without. Let 
Xi be a random variable describing the occurrence of species 
i. When species i is present in the locality, Xi is 1, when it is 
absent Xi is 0; Xi is then a Bernoulli variable. We define this 
random variable at any time t which describes a stochastic 
process we denote Xi,t  0. The occurrence probability of spe-
cies i at time tdt (dt being a very small time step) is then 
given as follows:
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P(Xi,tdt |Xi,t ) is the conditional probability describing Xi,t dt 
stating Xi,t. As Xi,t dt solely depends on Xi,t (not on other 
earlier time steps) we have a discrete-time Markov chain. In 
this process, species i will be present in a locality at time 
t dt if it was already present at time t and persisted (mean-
ing it did not go extinct) with probability (1–ei dt), or if it 
was absent and colonized the community from the mainland 
(with probability cidt). Note that dt is small enough to get 
0  ci dt  1 and 0  ei dt  1. Hence, Eq. (2) becomes:

P X c dtP X e dt P Xi t dt i i t i i t( ) ( ) ( ) ( ), , ,      1 0 1 1 	 (3)

This equation leads to when dt tends to zero. This formulation 
keeps the simplicity of the original MacArthur and Wilson 
model, but can also more generally be used to consider the 
probability of any given assemblage. P(Xi,t dt|Xi,t ) defines 
the rules to switch from one assemblage to one another dur-
ing the interval dt. There are N occurrence probabilities we 
gather within Yt  0  (X1,t  0, X2,t  0,..., XP,t  0) which leads to 

the description of 2N assemblages depicted by a given collec-
tion of zeros and ones. The conditional probabilities provide 
the transition from one local assemblage k to any other l dur-
ing dt. For any species i there are only four possible cases: at 
time t either species i is locally absent and colonizes the local-
ity (I1) or not (I2) during dt, either species i is present and 
goes extinct (I3) or survives (I4) during dt. The conditional 
probabilities between two communities states (l and k) can 
then be simply derived from these four probabilities:

P Y Y c dt c dtt dt t i I i i I i( | ( )
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We now apply the complete probability formula as defined 
in to get the probability of observing one assemblage at t  dt 
given its state at t. This is where the main benefit of Markov 
chain models is: it allows us to derivate exact solutions for 
the probabilities for assemblages, instead of a set of indepen-
dent occurrence probabilities for each species. This approach 
is promising for building joint species distribution models 
(see Discussion). This property will be fully explored in the 
next section to include interactions.

Consider as an example a pool of two species (N  2) 
for which we find four assemblages: at any time t, a locality 
can contain either two species (X1,t  1, X2,t  1), only one 
species (X1,t  1, X2,t  0) and (X1,t  0, X2,t  1), or none of 
them (X1,t  0, X2  0). The transition from one local assem-
blage to another is then easily obtained. Table 1 presents 
these conditional probabilities. This is actually the transi-
tion matrix of a Markov chain we solve (by calculating one 
eigen value, see below). To illustrate the dynamics expected 
in TIB from our assemblage point of view, we simulate the 
model as follows: c1  c2  0.15, e1  e2  0.05, P(X1,0  0, 
X2,0  0)  0.6 and P(X1,0  1, X2,0  0)  0.4, so species 2 
is absent at time t  0. Just as for the single species situa-
tion, the probabilities of observing each community tend to 
an equilibrium (Fig. 1A). By summing the previous prob-
abilities where a given species (1 or 2) is present (the condi-
tional probabilities) we get its overall occurrence probability 
(marginal probability, Fig. 1B). Finally, we can calculate the 
expected number of species in a locality (Fig. 1C), in agree-
ment with the TIB. Interestingly, this calculation is often 
achieved in the other way. Firstly, the presence probability 

of all species are computed: P
c

c e
i

i i

( )Xi 


. Then the rich-

ness is obtained under the assumption that species are inde-
pendent and so P(Xi, Xj )  P(Xi )P(Xj ). We show below that 
occurrence probabilities of each assemblage is a key to intro-
duce interactions among species.

Table 1. Conditional probabilities between potential assemblages. At any time t we calculate all the possible conditional probabilities 
between the four potential assemblages for a two species regional pool. These probabilities are derived by multiplying probabilities of single 
species events defined in Eq. (4). By doing so, we build the transition matrix of our Markov chain where species are assumed to be indepen-
dent. We release this hypothesis by linking extinction coefficients and species assemblages.

(X1,t  dt,X2,t  dt)

(X1,t,X2,t) (0,0) (0,1) (1,0) (1,1)

(0,0) (1–c1dt)(1–c2dt) (1–c1dt) c2dt c1dt (1–c2dt) c1dtc2dt
(0,1) (1–c1dt) e2dt (1–c1dt) (1–e2dt) c1dte2dt c1dt (1–e2dt)
(1,0) e1dt (1–c2dt) (1–c1dt) e2dt (1–e1dt) (1–c2dt) (1–e1dt) c2dt
(1,1) e1dte2dt e1dt (1–e2dt) (1–e1dt) e2dt (1–e1dt) (1–e2dt)
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If we expand the two species example (labeled 1 and 2, 
Table 1), according to the general model, we define two f 
functions (f1 and f2) linking interaction and extinction and 
two g functions linking interaction and colonization (g1, g2). 
At this stage, to reduce the model’s complexity, we consider 
that interactions solely impact extinction probabilities. This 
assumption is reasonable if we consider that local interac-
tions impact mostly demography (possibly leading to extinc-
tion) and that colonization success solely depends on the first 
propagule (interactions occur after arrivals). Therefore g1 and 
g2 are constant functions, respectively, returning c1 and c2. 
The functions f are assumed to have a sigmoid shape. There 
are many reasons such a function is of interest: 1) we get a 
clear link with the basic extinction probability, i.e. ei for an 
interaction strength of 0; 2) we define both a minimum and 
a maximum extinction probability; 3) the first interactions 
to occur are the most influential (Gravel et  al. 2011 con-
sidered that at least one interaction was required to persist, 
which is very similar).

f v e

e e e e e e
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To illustrate how interactions modify occurrence probabili-
ties, we simulate the model for two networks: A1 where all 
interactions are negative and A2 where they are all positive. 
We consider null diagonal elements for both networks. 
Consequently, there is no difference with the model with-
out interaction when one species is alone in the locality. 
Simulation results are presented at Fig. 2. Panel A presents 
the functions f1 and f2 we chose for our two species example. 
For networks A1 and A2, we show how interactions alter the 
probabilities of observing different assemblages (respectively, 
Fig. 2B and Fig. 2C). The assemblage with both species 
present (solid red lines) is the most affected by interactions, 
switching from an occurrence probability of 0.2 (for negative 

Integrating biotic interactions

We start by representing the interaction network by a 
community matrix A of N species that we incorporate into 
the Markovian TIB chain model. The elements ai,j of A 
quantify the effect of species j on the dynamics of species 
i. We first consider that interactions could alter both the  
colonization and the extinction probabilities (Gravel et  al. 
2011). When ai,j is negative, the colonization probability of 
species i decreases and/or its extinction probability increases 
when j is found locally. Inversely, when ai,j is positive, the 
colonization probability increases and/or the extinction 
probability decreases. Note that diagonal elements provide 
the extinction probability per time unit when no other 
species is present.

The elements of the community matrix A represent 
the pairwise effects of ecological interactions on transition 
probabilities. To account for the cumulative effects of local 
interactions on transition probabilities, we make coloniza-
tion and extinction probabilities community dependent. As 
explained above, at a time t, the Yt vector gives the local 
assemblages. We calculate the sum of interactions at any 
time and for each species as v  AYt

T (where T denotes the 
transpose operator). Our approach can be interpreted as a 
spatial analogue to the generalized Lotka–Volterra model 
because it takes into account the impact of the whole net-
work of interactions on each species dynamics and can deal 
with any type of interaction. We denote the coefficients of 
v by vi, they are species-specific parameters (weighted by 
parameter di) of two species-specific functions: fi and gi, 
respectively, standing for extinction and colonization prob-
abilities for species i. Note that at this stage we do not define 
any specific function relating interactions to colonization 
(fi) and extinction probabilities (gi), to keep the description 
of the model general (see below for some proposed func-
tions). At each time step, the local community composition 
impacts: 1) the colonization probability of species present 
in the regional pool but absent from the local community, 
and 2) the extinction probability of species present on the 
local community.

(A) (B) (C)

Figure 1. Dynamics of the community assembly. As a direct development of MacArthur and Wilson (1967) model, we simulate for two 
species, the dynamics of the four communities states with different initial conditions associated (A). By summing every states where one 
given species is present we get the occurrence probability of two considered species (B). Finally by summing the four states probabilities 
weighted by their species richness, we get the classical model of MacArthur and Wilson (C). The calculation of (B) and (C) does not require 
species being independent while classical approaches focus on (B) to derive (A) and (C) under this assumption of independence.
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A, in an environment characterized by w, we can derive all 
transition probabilities. These constitute a transition matrix 
of a Markov chain that we denote M(v,w). Its elements, mk,l 
(v,w), give the probability the locality in assemblage k turns 
into assemblage l (left side of Eq. (4)):

µk l i I i i I i

i I i

v w g v w dt g v w dt

f v

, ( ) ( )

(

, ( , ) ( , )

,

   



 



1 1
1

2 2
2

3 3
3

1

ww dt f v w dt
i I i) ( )( , ) 

4 4
4

1  (7)

Note that the dimension of M(v,w) will increase as a power  
of the number of species N and thus can rapidly becomes 
large. Let Ct be the line vector of the probability of 
observing each assemblage, defined by: Ct  (P(Yt  ‘state 1’),  
P(Yt  ‘state 2’),...,P(Yt  ‘state 2N’)). The Markov chain for-
malism defines the probability of the future community 
composition at time tdt as Ctdt M  Ct M asymptotically 
reaches the Ceq after a certain number of time steps. Ceq is 
given by the normalized left eigenvector associated to the 
first left eigenvalue.

lim
l

l
eq

l N

C M C
→ ∞

∈


0 	 (8)

Ceq contains the probability of all assemblages at the equilib-
rium. The occurrence probability of a given species, is pro-
vided by the sum of all probabilities of assemblage where 
that species is present. The richness at the equilibrium Seq is 
the sum of Ceq elements weighted by the number of species 
found in the associated assemblages.

interactions) to 0.8 (for positive interactions). Positive inter-
actions enhance, as expected, co-occurrence while negative 
interactions prevent species from being found on the same 
island. Consequently, occurrence probabilities of single spe-
cies states are lower in A2 than in A1. According to a defined 
network, occurrence probabilities of the different assem-
blages are then modified, which affect the expected species 
richness (Fig. 2D).

Integrating environmental gradients

We now introduce the effect of abiotic conditions, such as 
climatic variables, on transition probabilities. We denote 
the vector of n environmental conditions by w: w  (w1, 
w2,...wn). We first assume that physiological constraints can 
affect both colonization and extinction probabilities through 
the functions fi and gi (affecting, respectively, extinction and 
colonization rates). Again the model in its general formula-
tion does not presume any shape for these functions. We now 
have all the ingredients of an integrated model of biogeogra-
phy as the transition probabilities at a location depend on 1) 
species-specific colonization and existence probabilities, 2) 
the network of interactions, 3) local community composi-
tion, and 4) local environmental conditions. In the general 
formulation of the model, functions fi and gi are functions of 
multiple variables (v and w).

At any time t, for a regional pool of N species among 
which interactions are summarized by the community matrix 

(A) (D)

(B) (C)

Figure 2. Effects of biotic interactions on colonization–extinction dynamics. For any species i, the extinction probability ei is related to  
the strength of the interaction as shown in (A). The intersections of extinction curves with the grey dotted lines indicate the potential  
values of ei according to the different biotic context (A1, A2 and without interaction). We set the other parameters as follows: c1  c2  0.15, 
P(X1,0 1, X2,0  0)  0.4, P(X1,0  0, X2,0  0)  0.6, P(X1,0  0, X2,0  1)  P(X1,0  1, X1,0  1)  0. We then simulate the model for two 
simple networks A1 and A2 and present community assembly dynamics associated ((B) and (C)). Finally we compare the expected species 
richness on the locality (D) for our two networks and for the case without interaction which corresponds to the widespread linear version 
of the TIB.
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overlap, thereby decreasing the probability of an empty com-
munity (panel D, solid grey line). Finally, we present how 
interactions modify the resulting community composition 
along the environmental gradient (panel D). Species richness 
is constrained by the distribution of abiotic niches and the 
sign of the interactions. As expected, the role of interactions 
is strongest when abiotic niches largely overlap.

Exploring the model

In our exploration, we choose a regional pool N of 10 species 
to keep the number of assemblages reasonable (210  1024) 
and to numerically compute the exact solution of the 
equilibrium distribution Ceq. We consider four types of 
interaction matrices A. The first situation corresponds to the 
classical MacArthur and Wilson model, where the A matrix 
is null (no interactions). For the three other scenarios we 
generate random matrices with fixed connectance (number 
of existing links divided by the number of potential links). 
The coefficients within A are drawn uniformly within [0,1] 
and the sign of the interaction is determined by the action 
of one species on another, for instance, a predator has a 
negative impact on its prey leading to a negative a coeffi-
cient; in return, a prey has a positive effect on its predators. 
The intensity of the interaction is then determined by the  
d coefficient of extinction functions (Eq. (8)). We assume 
that the distribution of the links are given by the niche 
model (Williams and Martinez 2000). This model is sim-
ple and provides relevant random food webs with the same 

For the sake of illustration, we further reduce the com-
plexity of our model. We have previously removed the inter-
actions (v) from colonization (g) functions; we now state that 
extinction does not depend on environmental variables and 
so we remove the abiotic environment (w) from extinction 
functions (f). This can be interpreted as the effects of the 
abiotic environment on extinction rate being included within 
ei (i.e. extinction rate without interaction). Furthermore, we 
assume solely one environmental variable and a Gaussian 
shape for gi functions. A simple function with a clear opti-
mum and very low colonization for extreme environment 
values is.

g w w c h r c
w h

ri i i i i
i

i
1 1

1

2

( ) ( )( ) 













  


g , , , exp∗ 	 (9)

This enables us to define an environmental optimum (hi), a 
colonization probability per time unit (ci) and also suitable 
range (ri) for each species. Figure 3 presents the interplay 
between the three components of the integrated biogeo-
graphical model. The chosen functions for the environment– 
colonization relationship are illustrated in panel A. For the 
two previous networks (A1 and A2; illustrated in Fig. 2) 
we now compute the probabilities of observing the differ-
ent assemblages at equilibrium, along the environmental 
gradient (panel B and C). When interactions are negative 
(network A1), species repulse each other and rarely co-occur, 
whatever the environment is. Most of their occurrence follow 
their abiotic niche (blue and green lines) as they are barely 
found together. Inversely, when interactions are positive (for 
A2 network) they often co-occur where their abiotic niches 

(A) (D)

(B) (C)

Figure 3. Equilibrium for interacting species along an environmental gradient. The colonization probability of species i, ci, is related to the 
environment variable w according to species-specific requirements (A). The intersection of the colonization curve of species i with the grey 
dotted lines represents the value of ci associated with its environmental optimum hi. We compute equilibrium occurrence probabilities for 
the different assemblages along the environmental gradient, for the networks A1 with negative interactions (B) and A2 with positive one (C). 
We calculate the expected species richness on the locality for the two networks and without interaction (D).
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the classical TIB scenario (no-interaction, grey symbols), the 
resulting species richness distribution is binomial (here for 
all species pi,eq  0.5 as ci  ei  10–5). Differences between 
interaction types increase with d. Species rich mutualistic 
communities are more likely to occur since positive inter-
actions tends to promote co-occurrence. Therefore species 
occurrence can be dramatically affected by the strength of 
interactions: for d  10 (panel C in Fig. 4), the species rich-
ness is 9.46 for positive interactions (red symbols), 2.24 
for the negative ones (blue symbols) and 5 without inter-
actions. When positive and negative interactions are mixed 
(our predation scenario, green symbols on Fig. 4), it seems 
that the negative effect of predators on their prey prevails 
and so predation reduces species richness, but less than for 
competitive networks.

As we introduce variability through the use of randomly-
generated matrices, we also compute the standard deviation 
associated with occurrence probabilities. The variability is 
provided as the coloured vertical bars found in Fig. 4 which 
stand for 50% of the total standard deviation. Clearly, 
variability increases with 1) the strength of interaction 
and 2) the occurrence probability. Although this can sim-
ply reflect the variability of values found in A matrices, this 
could potentially be caused by the variability of the location 
of non-zero values in A matrices; that is, the structure of the 
networks we use.

Biodiversity distribution over environmental 
gradients

In this section, we introduce an environmental gradient to 
emphasize the interplay between interactions species-specific 
requirements along an environmental gradient. Our envi-
ronmental gradient takes values from 0 to 30, for each of 
them we calculate the expected species richness associated 
to all scenario. To do so, we start by computing the coloni-
zation functions (gi functions): species optima hi are drawn 

number of positive and negative interactions. For the two 
last scenarios, we keep the rules to distribute the links, but 
turn all the coefficients in A positive to generate a mutualism 
network, or negative for competition networks. Although 
these basic structures with exclusive interaction types are not 
realistic, they facilitate comparison among results. Hence, 
the scenarios simply differ by the sign distribution within 
the matrix A: 1) no interaction A is null, 2) predation mixes 
both signs ‘/–’, 3) mutualism only ‘’, 4) competition, 
only ‘–’. With these scenarios in hands, we 1) present the 
assemblages probabilities associated with a given level of spe-
cies richness and 2) we look at the species richness expected 
along an environmental gradient. For all figures presented 
hereafter we used 1000 randomly-generated A matrices.

Assemblage probabilities

First, we illustrate how interactions affect richness of species 
assemblages. To do so, we build the Markov chains for all the 
1000 A matrices generated (connectance set to 0.2) and we 
calculate the vector Ceq. This is a vector of 1024 occurrence 
probabilities (as we consider 10 species). Then we sum all 
the probabilities that correspond to assemblages of the same 
richness. We do so for three values of d coefficient (0.1, 1 and 
10); that is, we look at how the strength of interaction affect 
community richness predictions. Figure 4 presents the results 
of such investigation, with panels A to C corresponding to 
the results for the three different values of the d parameter.

As expected, positive interactions increase local species 
richness by diminishing extinction probabilities, while nega-
tive interactions weaken large communities (see the contrast 
between blue and red symbols on Fig. 4). This is stressed as 
interaction strengths increase, that is for increasing values 
of d. Indeed, when d is low, there is almost no difference 
among scenarios because interactions do not impact strongly 
colonization and extinction dynamics; occurring species can 
be regarded as mostly independent. All scenarios converge to 

(A) (B) (C)

Figure 4. Probabilities of species richness for different types of interaction. We compute expected species richness at the equilibrium with 
the following set of parameters: ei  10–5, ei,min  10–3ei, ei,max)  103ei and ci  10–5. We do so for three different interaction weights: d  0.1 
(A), d  1 (B), d  10 (C). In each panel, the four colours stand for the following types of networks: no interaction (grey), predation 
(green), competition (blue) and mutualism (red). Probabilities associated to coloured points are the means calculated for 1000 interaction 
matrices randomly-generated according to the niche model (Williams and Martinez 2000) with a connectance set to 0.2. Additionally, 
vertical bars represent 50% of the standard deviations associated to these means. To facilitate comparisons among panels, we do not 
represent the occurrence probability of the 10 assemblages community in panel C for mutualism, which is 0.66 (the standard deviation 
associated is 0.33).
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shape, which has one major consequence: from favourable 
to semi-harsh conditions, the species richness is maintained 
thanks to positive interaction, but it also quickly collapses as 
the environment becomes slightly harsher.

Finally, when positive and negative interactions are mixed, 
the higher the connectance, the flatter the richness profile 
(panel B in Fig. 5). The expected species richness declines as 
connectance increases but far less than it does for negative 
interactions only. We think this is caused by the coloniza-
tion of numerous prey that promote the survival of predators 
which in turn prevent assemblages to be as large as they can 
be without interaction (as predators reduce the persistence of 
prey). Conversely, from harsh to intermediate environmen-
tal conditions, mixed sign interactions positively affect the 
species richness. We explain this as the consequence of the 
benefit predators take from the preys presence. Assemblages 
with few predators, promoted by positive effect of the prey 
on their predators, may be relatively stable. Since coloniza-
tion is low, this assemblage may enhance species richness over 
time but they may also collapse as soon as an extra predator 
colonizes the island.

Discussion

Understanding how colonization–extinction dynamics influ-
ence species distribution and community structure remains a 
major challenge in biogeography (Wiens 2011, Godsoe and 
Harmon 2012, Jabot and Bascompte 2012). Here, we build 
upon the simplicity of the theory of island biogeography 
(TIB) to integrate crucial ecological processes, namely biotic 
and abiotic dimensions of the niche. Using the formalism of 
Markov chains, we derive an exact general solution for the 
occurrence probabilities of all possible assemblages that we 
calculate numerically (up to 10 species). Our approach is 
in stark contrast to the classic TIB (MacArthur and Wilson 
1967) where environmental gradients were not introduced 
and the co-occurrence among species was not modelled, 
despite empirical evidence of their impact (Diamond and 

from a uniform distribution from the range [10,20] and 
the widths of the abiotic niches are kept constant for all the  
simulations ri  5. Then we build the Markov chains for  
the different values of the environmental gradient and for 
the different A matrices. Again, we derive the vector Ceq and 
we sum its elements, i.e. occurrence probabilities of assem-
blage community, weighted by the species richness to which 
they refer. We repeat the procedure for an increasing value 
of connectance of A matrices: from 0 to 0.4. For this sec-
tion, the parameter d is set to 10, also extinction parameters 
are set as follows: ei  10–5, ei,min  10–3 ei, ei,max  103ei and 
ci  10–5. Like so we obtain the profile of species richness we 
report on Fig. 5.

For all scenarios, the richness is maximal at the center 
of the environmental gradient (Fig. 5). This is due to the 
distribution of species optima in the range [10,20]. Also this 
is the range of environmental values for which the effect of 
interaction are the most important. Indeed, the higher the 
colonization probabilities, the higher interactions occur, 
therefore, interactions strongly impact species richness for 
favourable abiotic conditions. We also find that changes in 
species richness increase with connectance, as depicted by the 
colour of the solid lines for the three panels of Fig. 5: from 
black (without interaction) to the lightest blue (connectance 
set to 0.4).

Species richness is inversely related to connectance when 
interactions are negative (panel A in Fig. 5). Moreover, 
when abiotic conditions are favourable, the number of spe-
cies expected tends to 1. At the centre of the gradient, even 
though colonization probabilities are maximal, many species 
colonize but likely go extinct because of competition. We 
expect the locality to be most often occupied by species that 
are not affected by competition. Alternatively, in the case of 
positive interactions (panel B in Fig. 5), the expected species 
richness is strongly enhanced by interactions even for low 
connectance. The expected species richness tends to reach 
the total number of species from the most favourable to 
semi-harsh abiotic conditions. As the connectance increases 
the Gaussian shape of the richness profile turns into a hat 

(A) (B) (C)

Figure 5. Biodiversity distribution along environmental and connectance gradients. We compute the expected species richness along an 
environmental gradient for competition (A), mutualism (B) and predation (C). We do so for different values of connectance depicted by 
the shades of blue. Species richness profile associated with the scenario without interaction is provided in each panel by the darkest solid 
line (connectance set to 0). Abiotic niches do have the same range for all species (ri  5) and the optima are randomly drawn in the interval 
[10,20]. The interaction weight (d) is set to 10. The extinction parameters are set as follows: ei  10–5, ei,min  10–3ei, ei,max  103ei and 
ci  10–5.
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community. Species interact in various ways, but at the end 
all interactions do impact demography by definition. This 
reality enters the model by either enhancing of decreasing 
extinction probabilities. In other words, the occurrence of a 
single species is derived from the expectation of observing all 
other species in the community.

Our framework therefore provides a formalism to inves-
tigate the relationship between co-occurrence networks 
(Araújo et  al. 2011) and interaction networks. There is a 
significant amount of information contained in the data 
of co-occurrence, which is overlooked by most current 
methods of community analysis. Standard species distribu-
tion models are fitted to univariate presence/absence data, 
neglecting the information contained in the distribution of 
associated taxa. Multivariate statistics summarize the spatial 
structure of ecological communities, but they are essentially 
limited to the description of co-occurrence, they are not 
meant to predict species distributions conditional on other 
species. Most analyses of co-occurrence aggregate pairwise 
observations into a single index for the whole community, 
thereby missing substantial information pertaining to the 
consequences of biotic interactions (Boulangeat et al. 2012). 
This situation is not surprising given there is no general the-
ory for co-occurrence despite recent efforts (Cazelles et  al.  
2015). Current hypotheses are mostly limited to negative 
interactions, leading to negative co-occurrence (repulsion), 
or positive interactions, leading to positive co-occurrence 
(attraction). Many theoretical achievements are required to 
study co-occurrence for more complex assemblages, mixing 
positive, negative and antagonistic interactions. In addition, 
the impact of indirect interactions emerging in interaction 
networks on species distribution is ignored. Our approach 
provides a formal framework to overcome these limitations as 
we calculate assemblage probability at biogeographical scale 
and then derive co-occurrence. It also allows the decomposi-
tion of the strength of pairwise associations between abiotic 
and biotic drivers, opening the way for novel statistical devel-
opments of species distribution models taking into account 
this multi-occurrence information. We propose that study-
ing the role of biotic factors at large scale requires us to intro-
duce them as assemblages instead of adding species as factors 
which likely leads to non-equivocal conclusion (Araújo and 
Luoto 2007). In addition, our approach is not limited to 
species pairs, the assemblage probabilities provide a valuable 
tool to the co-occurrence of groups of species such as motifs 
(Stouffer et al. 2007).

The importance of interactions across different scales is 
still debated (McGill 2010, Araújo and Rozenfeld 2014). 
A common assumption is that interactions are negligible at 
large spatial scales, based on the rational that abiotic filters 
primarily determine the composition of assemblages (Pearson 
and Dawson 2003). This argument persists even though 
theoretical (Gravel et al. 2011) and empirical (Gotelli et al. 
2010) evidence suggest the opposite. The key issue to solve 
this debate is thus to know how interactions can influence 
species assemblages with increasing spatial scale. Although 
the TIB still provide insights into the assembly of natural 
communities, the success of recent approaches integrating 
interactions strongly support their relevance at large scales. 
Indeed the addition of network structure (Pellissier et  al. 
2013) or correlation between species (Pollock et  al. 2014) 

Gilpin 1982). By taking these constraints together we reveal 
how they interplay and affect species richness. We believe 
our approach offers new perspectives on the theory of bioge-
ography and will support the development of species distri-
bution models with the addition of species interactions.

In our model, we introduce the effect of biotic interactions 
as an ecological process affecting colonization/extinction 
probabilities. This has already been considered in many 
ways in the literature. For instance, more than forty years 
ago, Levins and Culver introduced extinction and migra-
tion rates affected by competition and showed analytically 
how it reduces co-occurrence (Levins and Culver 1971). 
More recently, Jabot and Bascompte introduced production 
of eggs and seeds affected by interaction in an individual-
based, meta-community framework and, hence, highlighted 
the potential effects of interactions on local diversity (Jabot 
and Bascompte 2012). Also, Calcagno and colleagues dem-
onstrated that tuning extinction and colonization rates based 
on the trophic relationships among species could explain the 
limited length of food chain (Calcagno et al. 2011). In con-
trast with previous studies, our approach is fully rooted on 
the TIB which yields well-defined null predictions (adding 
neither interaction nor environmental gradients), focuses on 
assemblages, and allows the investigation of the impact of 
any kind of network, including mixed interactions.

Networks are convenient representations of the structure 
of ecological communities to study persistence and resilience 
(Thébault and Fontaine 2010). A strength of our model is 
that it not only takes all direct interactions into account, but 
also indirect ones (Wootton 1994). For instance, in a lin-
ear trophic chain of three species, the occurrence of the top 
predator depends not only on the presence of its prey but 
also on the species at the bottom of the chain (Gravel et al. 
2011). This means that the distribution of the top predator 
will be influenced not only by its own abiotic requirements, 
but also by those of its prey and the species at the bottom 
of the chain. The signature of such indirect interactions 
should be common in co-occurrence networks. This prop-
erty comes from the assumption that interactions change 
extinction rates and the Markov chain formalism employed. 
Our formalism therefore provides a tool, similar to the gen-
eral Lotka–Volterra equations for the local scale, that could 
be used to study the emergence of indirect interactions in 
networks at the large spatial scale.

The challenge of developing joint species distribution 
models (Pellissier et  al. 2013, Pollock et  al. 2014) have 
recently motivated researchers to investigate co-occurrence 
(Veech 2013, Araújo and Rozenfeld 2014). Our framework 
helps to disentangle the two main processes by which non-
random species associations (co-occurrence) can arise. First, 
two species not interacting with each other could be non-
randomly co-distributed because of similar or antagonistic 
ecological requirements. As we introduced an abiotic con-
straint on the colonization probability, some assemblages will 
be more likely than others on a given environment simply 
because some species are favoured and others filtered out. We 
thus expect to find a signature of the covariance in species 
response to the environment on these assemblage probabili-
ties. Secondly, non-random co-distribution will arise from 
ecological interactions. We considered an additive impact of 
all ecological interactions a species is experiencing from the 
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issue for time scales that exceed by far the lifespans of spe-
cies we consider. Further, our framework could be applied to 
investigate diversification dynamics on remote areas, with a 
particular emphasis on the effect of ecological interactions on 
adaptive radiations. Despite the complexity of such model, it 
would very likely provide valuable insights on the future of 
biodiversity under current global change.

Since the seminal work of Davis et  al. (1998), there is 
growing evidence that the response of species to climate 
change must be studied at the community scale (Suttle 
et  al. 2007). Even though species respond individually to 
climate change, they are constrained by complex direct and 
indirect biotic interactions emerging from large scale orga-
nization (Lavergne et al. 2010). The study of Cahill et al. 
(2013) has revealed the difficulties to link climate changes 
and species extinction. Even when the climate is expected to 
drive local extinctions, it actually implies a chain of pertur-
bations amidst which biotic factors prevail (e.g. loss of prey 
Durance and Ormerod 2010). For instance, species con-
tributing to the persistence of plant–pollinator networks are 
paradoxically the most vulnerable to extinction (Saavedra 
et al. 2011), highlighting the risk of extinction cascades. As 
Säterberg et al. expressed, ‘the species to be the first to go 
extinct is not the one whose mortality rate is increased but 
instead some other species in the food web’, thereby sug-
gesting that perturbations which affect species differently 
also spread over the network making extinction difficult 
to predict (Säterberg et  al. 2013). Although this is fully 
understandable as species interact, this makes forecasting 
of future species distributions more complicated. Therefore 
the challenge of proposing biodiversity scenarios to global 
change requires new approaches integrating ecological pro-
cesses over time and spatial scales, and to disentangle their 
relative contribution (Lavergne et al. 2010). We think that 
the assemblage-based approach we propose here is a promis-
ing perspective to introduce interactions in biogeographical 
models.
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