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Linking Frequentist and Bayesian Statistics
How can we estimate model parameters and what does it imply?

Frequentist
Want to find the best model parameter(s) for the data at hand

Likelihood P(Data|Model)
They are interested inmaximizing the Likelihood
They need data
This can be done using

Simulated annealing
The Nelder-Mead Simplex
Minimizing the sums of squares
. . .
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Linking Frequentist and Bayesian Statistics
How can we estimate model parameters and what does it imply?Bayesian

Want to find how good the model parameter(s) are given somedata
Posterior P(Model|Data)

They are intered in the posterior distribution
They need data and prior information
Recall that

P(Model|Data)︸ ︷︷ ︸Posterior
∝ P(Data|Model)︸ ︷︷ ︸Likelihood

P(Model)︸ ︷︷ ︸Prior
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Some ecological context
How important is elevation in defining sugar maple distribution on mont Sutton?

Mont Sutton
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Bayesian Statistics
A few words about the prior

Definition of prior probability
The prior probability informes us about the probability of the model beingtrue before the current data is considered.
Types of priors
“Uninformative”
These priors are meant to bring very little information about the modelInformative
These priors bring information about the model that is availableConjugate
These priors have the same functional form (mathematically speaking) asthe likelihood
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Bayesian Statistics
A few words about the prior

“Uninformative priors”
Example: If we have no idea of how elevation influence sugar maple
Gaussian distribution
f(x) = 1√2πσ2e

– (x–μ)22σ2 with μ = 0
σ = Large say 100
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Bayesian Statistics
A few words about the priorInformative priors

Example: If we know that
There are less sugar maples the higher we goThe influence of elevation on sugar maple cannot be more than twofolds

Uniform distribution

f(x) =
{ 1b–a for x ∈ [a, b]0 otherwise with a > –2

b < 0
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Bayesian Statistics
A few words about the prior

Conjugate priors
These types of priors are convenient to use because

They are computationally faster to use
They can be interepreted as additional data

Why are they useful?
There is no need to write the likelihood down when using them. All thatneeds to be done is to sample them to obtain a parameter estimation.
What does it mean to be of the same functional form?
It means that both distribution have th same mathematical structure.

Binomial distribution
θa(1 – θ)b

Beta distribution
θα–1(1 – θ)β–1

https://en.wikipedia.org/wiki/Conjugate_prior
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Rejection Sampling
It is designed so that we can sample from any distribution
Step 1 Define an easy to sample candidate distribution (c(x))

Uniform distribution { 1b–a for x ∈ [a, b]0 otherwise
Step 2 Define the target (hard) distribution (t(x))

e–(x2+sin(2x))4–0.473

−2 −1 0 1 2

0.0
0.1
0.2
0.3
0.4
0.5
0.6

x

D
en

si
ty

Step 3 Reject candidates with a probability proportional to the differencebetween the two distributions
Define M such that Mc(x) ≥ t(x) for all x
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Rejection Sampling

Algorithm in pseudocode
REPEAT

sample y from cand(x)

Calculate acceptance probability p = target(y) / (M*cand(y))

Draw a value U a random uniform distribution (0,1)

IF U < p

accept y

ELSE

reject y

UNTIL y is accepted
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Rejection Sampling
Write your own rejection sampling algorithm

Problem Sample from the following target distribution
e–(x2+sin(2x))4–0.473
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Hint
Use dunif and runif as candidate distribution with arange that covers a little more than the span of the targetdistribution
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Why are Markov Chain Monte Carlo (MCMC) useful?
Typical reasons to favour MCMC

It is flexible
It can be applied to complex models such as models withmultiple levels of hierarchy
It can be implemented from scratch (we will do it today !)

In practice, there is no reason to write an MCMC when thelikelihood can be solved analytically
Other alternatives to MCMC

Hamiltonian (hybrid) Monte Carlo
Laplace approximation
Integrated nested Laplace approximation
. . .
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Properties Markov Chain Monte Carlo (MCMC)
Similarity with simulated annealing

New parameter values are chosen sequentially but randomly
There are many ways to choose and accept new parameter values

Difference with simulated annealing
The main goal of MCMC is to sample the posterior distribution not tofind “the best” value
No “temperature” is defined
It does not impossible to get stuck in a loop while iterating

Assumptions of MCMC
All potential parameter combinations can be reached from all otherparameter combination
After enough iterations the chain will converges to a stationarydistribution
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The Metropolis-Hasting Algorithm
Theory

Usefulness
It is well designed to approach univariate problems
It is useful to sample Bayesian posterior distribution

Properties
Each iteration generates a sample from the targetdistribution
Samples are dependent on one another (they areautocorrelated)... So, effective sample size is smaller thanthe chain length
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The Metropolis-Hasting Algorithm
How the Metropolis-Hasting Algorithm worksDefining the important parts

Number of steps (N) to run the MCMC
It has to be large.
Starting value (θ)
It should roughly describe the distribution to be estimated
Target distribution (f(θ))
It is the distribution of value we aim at estimating
Jumping distribution (j(θcand|θt–1))
Many choices are possible but it must allow for positive recurrence
The normal distribution (μ = θcand, σ2 = 1) is a good starting point

1√2πσ2 e
– (x–μ)22σ2
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The Metropolis-Hasting Algorithm
How the Metropolis-Hasting Algorithm works

Defining the important parts (conitnued)
Acceptance probability

r = f(θcand)j(θt–1|θcand)f(θt–1)j(θcand|θt–1)

Note that for any symmetric distribution, such as the uniform or normaldistribution, the acceptance probability becomes
r = f(θcand)f(θt–1)

This is known as theMetropolis algorithm
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The Metropolis-Hasting Algorithm
How the Metropolis-Hasting Algorithm works conceptually

Algorithm in pseudocode
for t in 1 to N

sample theta c from j(theta c|theta[t-1])

set r c = r(theta c, theta[t-1])

sample U from uniform(0, 1)

IF U < r c

theta[t] = theta c

ELSE

theta[t] = theta[t-1]
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Good Practices
Chain length

How many step is enough. . .
A rough procedure

Step 1 Perform a pilot run for a reduced number of steps (10 to 100) andmeasure the time it takes
Step 2 Decide on a number of steps to run the algorithm to obtain a result in areasonable amount of time
Step 3 Run the algorithm again !
Step 4 Study the chain visually
A more statistical way - The Raftery-Lewis diagnostic
It relies on a pilot run to estimate the number of steps to be carried out
It is implemented in the raftery.diag function of the coda R package
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Good Practices
Trace plot
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Good Practices
Thinning

Thinning is essentially subsampling
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Good Practices
Burn-in

Burn-in is throwing away some iterations at the beginning ofthe MCMC run
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Exercice
Write your own Metropolis-Hasting Algorithm

Problem Sample from the following target distribution
e–(x+sin(3x))2+0.195
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Convergence
Multiple chains

Rerun the estimation procedure multiple times with differentstarting values
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Convergence
Density plot
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Convergence
Geweke convergence diagnostics

It compares two sections of the same chain
Technically, it is a two sample t test of mean with unequal variance

Z = θ̄A – θ̄B√ SAnA + SBnBwhere
θ̄A and θ̄B are the means of the chain section θA and θB,nA and nB are the number of steps of the chain section θA and θB,

SA = σ2A(1 –∑ αA)2 SB = σ2B(1 –∑ αB)2
σA and σB are the variance of the chains sections θA and θBαA and αB are autoregressive parameters of the chain sections θA and θB
It is implemented in the geweke.diag function of the coda R package
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Convergence
Gelman-Rubin convergence diagnostics

It compares multiple chains
it is a corrected ratio of the pooled variance of all chains with the within variance of each chain

R =
√ V
W

Chains pooled variance
V = N – 1

N W + 1NBwhere
B = N

M – 1
M∑
m=1
(θ̄m – θ̄)2,

N is the length of each chain (it is assumed to be the same)M is the number of chainsθ̄m is the mean chain m,θ̄ is the mean of all chains.
Within chain variance

W = 1M
M∑
m=1

σ2
It is implemented in the gelman.diag function of the coda R package.
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Adaptive Metropolis-Hasting Algorithm

We adapt the standard deviation of the normal distributionduring burn-in
1√2πσ2Ae

– (x–μ)22σ2A

where A is a tuning parameter
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Adaptive Metropolis-Hasting Algorithm

Adaptative Algorithm in pseudocode
set A = 1
for t in 1 to N

sample theta c from j(theta c|theta[t-1], A)
set r cand = r(theta c, theta[t-1])
sample U from uniform(0, 1)
IF U < r cand

theta[t] = theta c
IF burnin

A = A * 1.01
ELSE

theta[t] = theta[t-1]
IF burnin

A = A / 1.01
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Exercice
Build your own adaptive Metropolis-Hasting algorithm

Problem Sample from the following target distribution
e–(x2+sin(3x))4–0.344
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Single component adaptive Metropolis-Hasting algorithm
Adaptative Algorithm in pseudocode
set A = repeat(1,nparam)
for t in 1 to N

for i in 1 to nparam
sample theta c[i] from j(theta c[i]|theta[i,t-1], A[i])
set r c = r(theta c, theta[t-1])
sample U from uniform(0, 1)
IF U < r c

theta[t] = theta c
IF burning

A[i] = A[i] * 1.01
ELSE

theta[t] = theta[t-1]
IF burning

A[i] = A[i] / 1.01

The SCAM is designed for models with multiple parameters
theta cand is a vector, not a single value
theta is a matrix, not a vector
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Exercice
Build your own single component adaptive Metropolis-Hasting algorithm

Problem Sample from the following bivariate distribution

exp (– 12 (x – μ)TΣ–1(x – μ))√
|2πΣ| ,

with
Mean μ = [10, 30]
Variance Σ =

[ 1 0.70.7 2
]
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The probability density function of the bivariate normal distribution can beobtained through the dmvnorm function of the mvtnorm R package.
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Gibbs Sampling
Properties

A specific case of the single component Metropolis-Hastingalgorithm
It is designed to sample from a posterior with multipleparameters

p(θ1, θ2, . . . , θp|y,X)
For each step, the Gibb sampler cycles through the pparameters of θ where a sample is taken conditional on allother p – 1 parameters

f(θi|y,X, θ1, . . . , θi, . . . , θp)
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Gibbs Sampling
Properties

Defining the (additional) important parts
Input data
This includes both the dependent and the independent variables
Define the joint posterior distributoin

f(Model, Data)
Define the model (and thus the number of parameters) inthe posterior
Define the conditional sampler for each parameter interms of the joint posterior distribution f( )

Ci(Modelt–1, Data)
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Gibbs Sampling
Properties

Gibbs sampler pseudocode (in its simplest form)
for t in 1 to N

for i in 1 to nparam

draw theta[i,t] from C[i](theta[-i,t-1], y, X)
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Exercice - Write your own Gibbs sampler
The question

Estimate posterior mean μ̂ and standarddeviation σ̂ of the following ten values
15 19.59 15.06 15.71 14.65
21.4 17.64 18.31 15.12 14.40

Prior specification
μ ∼ N (μ0, σ20) with μ0 = 16, σ20 = 0.4
τ = 1σ2 ∼ G(α0, β0) with α0 = 1, β0 = 3
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Exercice - Write your own Gibbs sampler
A few guidelines

Recall that
P(Model|Data)︸ ︷︷ ︸Posterior

∝ P(Data|Model)︸ ︷︷ ︸Likelihood
P(Model)︸ ︷︷ ︸Prior

P(θ|Y) ∝ P(Y|θ)P(θ)
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Exercice - Write your own Gibbs sampler
A few guidelines

Define the different parts... Mathematically
Model θ = (μ̂, σ̂)
Likelihood

P(Y|θ) = n∏
i=1

1
σ̂√2πe

– (Yi–μ̂)22σ̂2

Prior
P(θ) = (μ̂|μ0, σ0)(σ̂|α0, β0)

= 1
σ̂0√2πe

– (μ̂–μ0)22σ20 × βα00Γ(α0) τ̂
α0–1e–β0τ̂
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Exercice - Write your own Gibbs sampler
A few guidelines

Define the different parts. . .Mathematically
Joint posterior

P(θ|Y) = n∏
i=1

1
σ̂√2πe

– (Yi–μ̂)22σ̂2 × 1
σ̂0√2πe

– (μ̂–μ0)22σ20 × βα00Γ(α0) τ̂
α0–1e–β0τ̂

– Day 3 Bayesian Rejection Sampling MCMC MH Good Practices Convergence MH (more) Gibbs Bonus



Exercice - Write your own Gibbs sampler
A few guidelines

How to sample each parameter independently
Mean (μ̂)

P(μ̂|σ̂, Y) ∝ n∏
i=1

1
σ̂√2πe

– (Yi–μ̂)22σ̂2 × 1
σ̂0√2πe

– (μ̂–μ0)22σ20

Standard deviation (σ̂)

P(σ̂|μ̂, Y) ∝ n∏
i=1

1
σ̂√2πe

– (Yi–μ̂)22σ̂2 × βα00Γ(α0) τ̂
α0–1e–β0τ̂
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Exercice - Write your own Gibbs sampler
A few guidelines

How to sample each parameter independently
It is essential to use log-likelihood instead of the likehood whenimplementing the Gibb samplerMean (μ̂)

log(P(μ̂|σ̂, Y)) ∝ n∑
i=1
log
( 1
σ̂√2πe

– (Yi–μ̂)22σ̂2
)
– (μ̂ – μ0)22σ20

Standard deviation (σ̂)
log(P(σ̂|μ̂, Y)) ∝ n∑

i=1
log
( 1
σ̂√2πe

– (Yi–μ̂)22σ̂2
)
+ log(τ)(α0 – 1) – β0τ̂

This is one way. . . , there is another using conjugate prior
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Exercice - Write your own Gibbs sampler
A few guidelines

How to sample parameters using conjugate priors
When using conjugate prior, we do not need to define the likelihood; toobtain the posterior we simply need to sample from the right conjugateprior distribution.
Important points to consider

“Special” priors need to be define
This gives less flexibility to the choice of priors we can choose
It is computationally faster
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Exercice - Write your own Gibbs sampler
A few guidelines

How to sample parameters using conjugate priors
At this point, Wikipedia can be very useful
https://en.wikipedia.org/wiki/Conjugate_prior

It tells us that

μ̂ ∼ N
 μ0σ20 +

∑ni=1 Yiσ2
1σ20 + nσ2


τ̂ ∼ G

(
α + n2 , β +

∑ni=1(Yi – μ̂)2
)

If we sample μ̂ and τ̂ from the previous distributions we should be able toobtain the “true” value.
At this point, the choice of priors may affect the result. Try different ones !!
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Bonus - An ecological problem
How important is elevation in defining sugar maple distribution on mont Sutton?Model y = β0 + β1x + ε

y is the abundance (or presence-absence. . . youdecide!) of sugar maple
x is elevation
β0 is an intercept
β1 is the importance of elevation
ε is the model residuals

Things to think about
What data you choose to analyse
The type of regression performed
The way you write the likelihood
The priors (what do you know or don’t know)
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