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Douter de tout ou tout croire sont deux solutions également commodes,
qui nous dispensent de réfléchir.

–Henri Poincaré
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Introduction to Model Comparison

Why compare models?

• All models are imperfect
• How good is our model given the modelling goals?

Matthew Talluto – Model Comparison



Introduction to Model Comparison

Why compare models?

• All models are imperfect
• How good is our model given the modelling goals?

Matthew Talluto – Model Comparison



Comparing models

Before beginning, evaluate the goals of the comparison

• Predictive performance
• Hypothesis testing
• Reduction of overfitting

If you are asking yourself, “should I use A/B/DIC?”

Remember Betteridge’s law. . .

Any headline that ends in a question mark can be answered with
the word “NO”
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Informal model comparison
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Comparison through evaluation

If the goal is predictive performance, evaluate directly.

• Cross-validation
• k-fold cross validation

Cost: can be computationally intensive (especially for Bayesian). But you
are already paying this cost (you ARE evaluating your models, right?)

Requires selecting an evaluation score

• ROC/TSS (classification)
• RMSE (continuous)
• Goodness of fit
• . . .
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Bayesian predictive performance

Consider a regression model

pr(θ|y, x) ∝ pr(y, x, |θ)pr(θ)
y ∼ N (α + βx, σ)

From a new value x̂ we can compute a posterior prediction ŷ = α + βx
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Bayesian predictive performance

We can then compute the log posterior predictive density (lppd):

lppd = pr(ŷ|θ)

Where is the prior?

Matthew Talluto – Model Comparison



Bayesian predictive performance

We can then compute the log posterior predictive density (lppd):

lppd = pr(ŷ|θ)
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Bayesian predictive performance

We want to summarize lppd taking into account:

• an entire set of prediction points x̂ = {x1, x2, . . . xn}
• the entire posterior distribution of θ

• (or, realistically, a set of S draws from the posterior distribution)

lppd =

n∑
i=1
log

(
1
S

S∑
s=1
pr(ŷ|θs)

)

To compare two competing models θ1 and θ2, simply compute lppdθ1 and
lppdθ2 , the “better” model (for prediction) is the one with a larger lppd.
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pr(ŷ|θs)

)

To compare two competing models θ1 and θ2, simply compute lppdθ1 and
lppdθ2 , the “better” model (for prediction) is the one with a larger lppd.

Matthew Talluto – Model Comparison



Bayesian predictive performance

We want to summarize lppd taking into account:

• an entire set of prediction points x̂ = {x1, x2, . . . xn}
• the entire posterior distribution of θ

• (or, realistically, a set of S draws from the posterior distribution)

lppd =

n∑
i=1
log

(
1
S

S∑
s=1
pr(ŷ|θs)
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Information criteria

What do we do when θ1 and θ2 are very different?

Considering the lpd (using the calibration data), it can be proven, when θ2
is strictly nested within θ1, that lpdθ1 > lpdθ2 .

Thus, we require a method for penalizing the larger (or more generally,
more flexible) model to avoid simply overfitting, especially when validation
data are unavailable.
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AIC

AIC = 2k – 2 log pr(x̂|θ)

• pr(x̂|θ) = max(pr(x|θ)) and k is the number of parameters.
• AIC increases as the model gets worse or the number of parameters

gets larger
• –2 log pr(x̂|θ) is sometimes referred to as deviance

What is the number of parameters in a hierarchical model?
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DIC

D(θ) = –2 log(pr(x|θ))

We still penalize the model based on complexity, but we must estimate
how many effective parameters there are:

p
D
= E[D(θ)] – D(E[θ])

DIC = D(E[θ]) + 2p
D
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DIC

Pros:

• Easy to estimate
• Widely used and understood
• Effective for a variety of models regardless of nestedness or model size

Cons

• Not Bayesian
• Assume θ ∼MN
• Modest computational cost
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Bayes factor

Consider two competing models θ1 and θ2

In classical likelihood statistics, we can compute the likelihood ratio:

LR =
MLE(X|θ1)
MLE(X|θ2)

A fully Bayesian approach is to take into account the entire posterior
distribution of both models:

K =
pr(θ1|X)
pr(θ2|X)

Matthew Talluto – Model Comparison



Bayes factor

Consider two competing models θ1 and θ2

In classical likelihood statistics, we can compute the likelihood ratio:

LR =
MLE(X|θ1)
MLE(X|θ2)

A fully Bayesian approach is to take into account the entire posterior
distribution of both models:

K =
pr(θ1|X)
pr(θ2|X)

Matthew Talluto – Model Comparison



Bayes factor

For a single posterior estimate of each model:

K =
pr(θ1|X)
pr(θ2|X)

=
pr(X|θ1)pr(θ1)
pr(X|θ2)pr(θ2)
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Bayes factor

To account for the entire distribution:

K =

∫
pr(θ1|X)dθ1∫
pr(θ2|X)dθ2

=

∫
pr(X|θ1)pr(θ1)dθ1∫
pr(X|θ2)pr(θ2)dθ2
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And others

• Bayesian model averaging
• Reversible jump MCMC
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Software

library(mcmc)
suppressMessages(library(bayesplot))

logposterior <- function(params, dat)
{

if(params[2] <= 0)
return(-Inf)

mu <- params[1]
sig <- params[2]

lp <- sum(dnorm(dat, mu, sig, log=TRUE)) +
dnorm(mu, 16, 0.4, log = TRUE) +
dgamma(sig, 1, 0.1, log = TRUE)

return(lp)
}
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Software

X <- c(15, 19.59, 15.06, 15.71, 14.65, 21.4, 17.64, 18.31,
15.12, 14.40)

inits <- c(5, 2)
tuning <- c(1.5, 0.5)

model <- metrop(logposterior, initial = inits,
nbatch = 10000, dat = X, scale = tuning)

model$accept

## [1] 0.2326

colnames(model$batch) = c('mu', 'sigma')
colMeans(model$batch)

## mu sigma
## 16.114213 2.635871
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Software

mu sigma
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Software

mu sigma
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Other software

• mcmc
• LaplacesDemon
• JAGS
• Stan
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