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UNCERTAINTY AND THE ASSESSMENT OF
EXTINCTION PROBABILITIES!?

DoNALD LUDWIG
Departments of Mathematics and Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 122

Abstract.

A proper assessment of the probability of early collapse or extinction of a

population requires consideration of our uncertainty about crucial parameters and processes.
Simple simulation approaches to assessment consider only a single set of parameter values,
but what is required is consideration of all more or less plausible combinations of param-
eters. Bayesian decision theory is an appropriate tool for such assessment. I contrast standard
(frequentist) and Bayesian approaches to a simple regression problem. I use these results
to calculate the probability of early population collapse for three data sets relating to the
Palila, Laysan Finch, and Snow Goose. The Bayesian results imply much higher risk of
early collapse than maximum likelihood methods. This difference is due to large proba-
bilities of early collapse for certain parameter values that are plausible in light of the data.
Because of simplifying assumptions, these results are not directly applicable to assessment.
Nevertheless they imply that maximum likelihood and similar methods based upon point
parameter estimates will grossly underestimate the risk of early collapse.
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INTRODUCTION

Assessments of population viability or probability of
extinction are important parts of efforts to mitigate or
control human impacts upon natural populations (Soulé
1987). The main objective of this work is to point out
the large differences between the results of calculations
of extinction probabilities that ignore our uncertainty
and those that take uncertainty into account. I argue
below that proper assessments must take account of
uncertainty and that Bayesian decision theory is an
appropriate means to this end.

In ecological investigations the difficulties in per-
forming properly controlled experiments over appro-
priate scales in space and time and the complexity of
the underlying genetics, behavior, and component pro-
cesses preclude clear inference in most situations. We
are faced with the problem of making assessments
when several or many competing hypotheses may be
plausible in light of the data. A simple approach to
inference via hypothesis testing is often inconclusive,
since the null hypothesis is seldom rejected but the
power of our tests to reject is often low. Under such
circumstances it is foolish to adopt an estimate for the
probability of extinction based upon a null hypothesis
when it has not been properly challenged. A second
possible approach is to select the most likely hypothesis
via a least squares or maximum likelihood estimation
and calculate a probability of extinction based upon
the “‘best estimate.”” Such an approach ignores our un-
certainty. It is not a reliable guide to policy since it

! Manuscript received 14 August 1995; revised 12 February
1995; accepted 1 March 1996; final version received 5 April
1996.

2 For reprints of this group of papers on Bayesian inference,
see footnote 1, p. 1034.
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fails to take other plausible hypotheses into account
(Lindley 1985, Morgan and Henrion 1990). A third
approach to decision might be to attempt to minimize
some risk or loss under the most unfavorable circum-
stances imaginable. Since there is no limit to the fer-
tility of the human imagination, such a policy may be
prisoner to the wildest current fear. It is better to at-
tempt to assess the relative plausibilities of the various
hypotheses and weight them accordingly. The statis-
tical theory of decision was devised for this purpose
(Chernoff and Moses 1959, Winkler 1972, Berger
1985, Lindley 1985). I shall follow that approach.

The fundamental difference between standard (fre-
quentist) statistical theory and statistical decision the-
ory (Bayesian statistics) is in the interpretation of the
term ‘‘probability’’ and the associated random vari-
ables. To a frequentist, ‘‘probability’’ can only refer to
the result of an infinite series of trials under identical
conditions, while a Bayesian interprets ‘‘probability”’
to refer to the observer’s degree of belief. Weather fore-
casts or betting odds are often stated in terms of Bayes-
ian probabilities. In such cases there is no question of
an infinite series of trials under identical conditions,
but rather an organized appraisal in light of previous
experience. In the present context where only limited
data are available and uncertainty is large, the Bayesian
interpretation is more appropriate.

Some scientists have difficulty in accepting Bayesian
methods and interpretations in view of their apparent
arbitrariness and subjectivity. These objections deserve
amore lengthy discussion than can be given here (Lind-
ley 1971). A short answer is that nothing in Bayesian
theory is as arbitrary as the choice of 5% or 1% sig-
nificance levels or the choice of null hypotheses. The
““subjectivity’” in Bayesian inference lies in the choice
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of the prior density for unknown parameters, and in
differing amounts and types of information available
to various observers. There are systematic methods to
choose or elicit priors (e.g., Wolfson et al. 1996). They
have the advantage that the corresponding assumptions
are explicit, while often similar assumptions about
sampling distributions in frequentist inference are
unexamined (Berger 1985). The fact that Bayesian the-
ory takes account of differences between observers is
an advantage. It allows us to examine the differences
in assessments and decisions due to varying amounts
of information, and hence to assess the value of ad-
ditional information.

In this work I show how Bayesian methods may be
used to calculate the probability of extinction from pop-
ulation census data. In order to simplify the exposition,
I have neglected a number of important features, such
as possible inaccuracy in the census data and random
“catastrophes.” These neglected features are impor-
tant, but the simplified theory is adequate to assess the
importance of including uncertainty. I develop a pop-
ulation dynamics model, a formula for the probability
of early collapse, and a statistical model for estimation
of the population parameters. I then contrast Bayesian
linear regression theory with a frequentist treatment.
These results are used to obtain the Bayes posterior
distribution for the parameters. Finally, I contrast the
Bayesian result with a conventional maximum likeli-
hood approach for three data sets.

ASSESSMENT OF POPULATION
VIABILITY FROM DATA

Small or declining populations are an obvious focus
of concern when conservation decisions are made. We
would like to concentrate efforts and resources on pop-
ulations or systems whose survival or integrity are
threatened and where there is a fair prospect that fea-
sible actions may make a substantial difference. Such
decisions depend upon an assessment of the likely con-
sequences of various actions, including inaction.

Various indicators of population viability have been
proposed, including (1) the probability of extinction
assuming a certain starting population size and known
parameters in the statistical model, (2) the probability
of survival for a certain period under the same con-
ditions as (1), and (3) the expected time to extinction
under the same conditions as (1). The difficulty with
(1) as a measure of threat is that according to the theory
of stochastic processes, the probability of eventual ex-
tinction is always unity if extinction is possible. Hence
the more complicated measure (2) may be more ap-
propriate. The expected time to extinction (3) is simpler
to compute than (2), but it may be distorted by the
appearance of long survival times with low probability
(Ludwig 1996). Here I use (4) the probability of col-
lapse to a very low (unsafe) population size from a
small one, before reaching a large (safer) population
size. This indicator is as easy to compute as (3). It
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focusses on the short or medium term, and it is not
distorted by averaging as (3) is. I shall call it ‘“‘the
probability of early collapse.”

Now suppose that the consequences of various pro-
posed actions are to be assessed in terms of the chosen
indicator. Nothing is more common in the management
of resources than surprise, usually unpleasant surprise
(Ludwig et al. 1993). We may attempt to guard against
such surprises by taking account of our uncertainty
about the ‘“‘true’’ parameter values or indeed the ‘‘true”
population dynamics model. What is required of the
biological and statistical sciences is an organization of
our current knowledge of the system in order to provide
a guide for action. Part of that organization is an as-
sessment of our uncertainty about the system and the
consequences of that uncertainty. I pointed out in the
Introduction that point estimates or hypothesis testing
may ignore important components of our uncertainty
about the population dynamics that actually apply.

One way to take account of uncertainty is to simulate
the population process by incorporating a pseudoran-
dom number generator in computer models of the pro-
cess (Burgman et al. 1993). One can estimate proba-
bilities such as (2), (3), and (4) by collecting the results
of many such simulations. In their simplest form, such
simulations assume fixed (known) parameter values.
Such simulations are unlikely to be adequate because
we seldom or never have enough information to de-
termine the influential parameters (such as intrinsic
growth rate at low densities) with much precision. In
response to this objection, we may perform “‘sensitivity
analysis” by assessing the change in the indicators of
interest when parameters or combinations of parame-
ters are varied. One must choose a variety of more or
less plausible parameter combinations and simulate
with each of them. Such a procedure may consume
much more computer time than the simpler version, in
view of the great variety of parameter combinations
that may be plausible in light of the data.

There are numerous difficulties with such an ap-
proach. If one is going to consider ‘‘plausible’”’ param-
eter combinations, how does one assess their plausi-
bility? One ought to apply statistical theory in order
to obtain information about the pattern of variability
of parameter estimates, but such considerations appar-
ently do not enter into the prescriptions of Burgman et
al. (1993). A frequentist approach to the sensitivity
problem would use the sampling distribution of param-
eter estimates, assuming fixed, known parameters. A
procedure of this sort will reveal poorly determined
parameters and combinations of parameters. Such a
procedure is carried out by Dennis et al. (1991). They
use a local approximation near the point of maximum
likelihood to estimate the variance of quantities of in-
terest. They also mention bootstrap methods or ‘‘the
approach of computing profile likelihoods and asso-
ciated interval estimates’’ (Kalbfleisch 1986). The lat-
ter method is very close to a Bayesian method with a
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flat prior, which I employ below. All such analyses
except for the last one rest upon the assumption of
known parameters and many independent data sets, but
instead we have one or a few data sets and the param-
eters are unknown. With a frequentist approach, we
cannot even pose questions such as ‘“What is the prob-
ability that the average net population growth rate is
negative?,” since the parameters and functions of the
parameters are not random. According to frequentist
statistics, the growth rate is either negative or it is not.

The Bayesian approach may be thought of as a sys-
tematic procedure for performing sensitivity analysis.
There is a considerable literature bearing on decision
making under uncertainty. Much of it has been moti-
vated by economic or business decisions. The more
theoretical work is known as ‘‘statistical decision the-
ory.” Some pertinent references are cited in the Intro-
duction. In essence the theory measures ‘‘plausibility”’
of parameter values in terms of subjective or Bayesian
probability. Decisions are compared and evaluated in
terms of the ‘“‘Bayes risk,”” which is a weighted sum
of the utility or indicator function with weights given
by the Bayes posterior distribution.

One might object that probabilities cannot depend
upon an observer or the amount of information avail-
able. That is certainly true of the measures (2), (3), and
(4). But if one performs a sensitivity analysis in order
to account for our uncertainty about the underlying
dynamics, the result will surely depend upon the as-
sumptions that are made about which parameter com-
binations are plausible and how less plausible values
are weighted. It is not a question of whether or not to
make such judgements, but rather whether all of these
judgements and assumptions are to be explicitly stated
and examined, as in the Bayesian approach.

BAYESIAN ASSESSMENT OF THE
PROBABILITY OF QUASI-EXTINCTION

The Bayesian assessment of the probability of early
collapse consists of two steps: (1) the probability of
early collapse must be computed as a function of the
parameters of an underlying statistical model (or pos-
sibly obtained by simulations), and (2) that probability
must be considered over the posterior distribution for
these parameters. The Bayes risk is given by the in-
tegral of that quantity over the posterior distribution.
I argued above that the second step is required to ac-
count for our uncertainty about the true parameter val-
ues. If we knew the true parameter values, then the first
step would be sufficient.

Statistical model

Assume that the population size N, satisfies an equa-
tion of the form

Niw = NFWN)e, (1)

where the function F(N) describes the per capita net
growth rate and the g, are normally distributed varia-
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tions in the logarithm of the growth rate with mean
zero and unknown variance o2 If

X, = log N, @)
then Eq. 1 takes the form
Xt+l = Xr + f(Xt) + Ep (3)

where f{X) = log F(eX). In order to simplify later re-
sults, I shall assume that F(N) has the Gompertz form,
and hence

fX) =B + BX O]

Other forms could be incorporated, but then the prob-
abilities of interest might have to be computed nu-
merically instead of analytically. The parameter 3, may
be identified with the intrinsic growth rate 7, and the
carrying capacity k is given by the ratio exp(—B,/B,).
The form of Eq. 4 is more natural for statistical analysis
than one involving r and k since (3, and (B, appear as
regression coefficients. In fact, if we define

YI = Xt+l - Xn (5)

~ and assume the form of Eq. 4, then Eq. 3 .takes the

form of a linear regression.

Diffusion approximation

As explained at the beginning of this section, I shall
calculate the probability of the population hitting a low
value x, before reaching a high value x,, as a function
of the starting value x. The low value need not be zero:
any low value that is deemed to be critical for survival
of the population will do. This probability may be
thought of as the probability of an early population
collapse. In order to simplify its calculation, I shall
employ a diffusion approximation. I provide a much
more general theory in Ludwig (1996), and in fact I
warn there against uncritical use of diffusion approx-
imations. For purposes of illustration, the diffusion ap-
proximation is adequate, since it has the correct qual-
itative behavior.

Diffusion theory is based upon the replacement of
Eq. 3 by the stochastic equation in continuous time

dX = f(X)dt + dw, (6)

where dW is normally distributed with mean O and
variance o2dt. If u(x) denotes the probability of hitting
X, before x, for a population starting at x, then u satisfies

the diffusion equation (Ludwig 1974)
1 d?u du
rorder T B, + Bzx)a =0, @)

with the boundary conditions
u(x) = 1, u(x;) = 0. @

It is clear from Eqs. 7 and 8 that u depends upon x,,
x;, B1» By, and o as well as x, and hence the later for-
mulas will show this dependence. If £ denotes the log-
arithm of the carrying capacity,
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B,

then the solution of Eq. 7 with the boundary conditions
(Eq. 8) is given by

(&)

u(x, xo, Xy, B1s Boy 0)

J Xl exp[—B,(x" — £)*/0?] dx’
= = .0
J exp[—B,(x" — £)*/0?] dx’

0

The numerical evaluation of this expression is de-
scribed in Appendix A.

UNCERTAINTY AND REGRESSION

In this section I address the second part of the cal-
culation of a Bayesian assessment of the risk of early
population collapse. The population dynamics model
Eqgs. 1 or 4 takes the form of a linear regression, as
pointed out above. Now we must characterize the un-
certainty of parameter estimates based upon such a lin-
ear regression. The calculations are almost the same as
for a frequentist treatment of the problem, but the final
result is a probability density for the regression param-
eters. This density may be used to provide weightings
for the hypotheses corresponding to each set of param-
eter values. Guttman et al. (1982) is a general reference
for the methods and results of this section.

I begin with the statistical model

Y, =B, +BX +te.t=1...n (11)

where Y, are observations of the dependent variable, X,
are values of the explanatory variable, and e, are nor-
mally distributed errors. In order to simplify the ex-
position, I assume at first that the variance of e, is
known to be o?; the more general case is treated below.
Then the logarithm of the likelihood is given by

= —12 + B.X, - Y2 (12)
202 5
A few definitions and transformations simplify the cal-
culations: let the means of the independent and depen-
dent variables be given by

13)

= 1/nD Y,.
r=1

For later convenience also set

i X, — X)2.

(n “ & (14)

The final formulas come out more simply in terms of
the variables

Y= B + BZX’ Y2 = B2

The choice of v, and vy, instead of B, and B, produces

s)
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a sum of squares involving <y, and v, instead of a more
complicated form in B, and B, in (Eq. 17) below.

The least squares or maximum likelihood estimates
of v, and v, are given by

"W=Y

J, = —— X, -X), -Y

2= 5 1) - E ( X ).
With the definitions (Eq. 15), Eq. 12 takes the form

(16)

-1
€= o3l =302+ (= Ds’y, — 927
o

+ (n — 2)87], a7
where the residual sum of squares is given by.
(n=2)$? =2 [ + 5X, - X) - Y]>. (18)
=1

Frequentist interpretation

The frequentist interpretation of the foregoing is that
the variables €, are random, and hence the estimates
4, and ¥, are also random variables, as can be seen by
substituting Egs. 11 and 13 into Eq. 16. One then stud-
ies the sampling distribution of 4, and 4, if repeated
samples are taken with the same X, and fixed values of
the parameters vy, and vy,. These estimates are unbi-
assed: the expected values of 4, and 4, are vy, and v,,
respectively. The random variables ¥, and ¥, are un-
correlated and normally distributed, and their variances
are given by

o? = 0—2, o3 = o’

n (n — 1)s?’ (19

Bayesian interpretation

As indicated in the Introduction, the fundamental
difference between a frequentist and a Bayesian view-
point is in the interpretation of the term ‘‘probability”’
and the associated random variables. In contrast to the
preceding frequentist interpretation, the Bayesian in-
terpretation is that the data Y, and X, are fixed, since
there is only one set of data under consideration. The
variables <y, and vy, are regarded as random since we
are uncertain of their true values. The joint probability
distribution of vy, and vy, characterizes our uncertainty.

Subsequent calculations require the integration of a
posterior density for vy, and vy, over the vy,, y, plane. It
is necessary to start with a “prior density”’ for these
variables to characterize the state of our knowledge
before examining the data. Since I am assuming no
information about -y, and <y, other than that contained
in the data, I shall adopt a ““flat’’ prior for -y, and ry,,
i.e., assume that all values of vy, and v, are equally
likely a priori. Since this density is integrated over the
whole v,, ¥, plane, this density is ‘“‘improper”’: it leads
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to an infinite integral. The choice of prior is discussed
in Jeffreys (1961) and Berger (1985).

According to Bayes’ theorem, the posterior density
for v, and v, is the normalized product of the prior
density and the likelihood function. With the adoption
of a flat prior, the density for the Bayes posterior is
proportional to the likelihood function. After normaliza-
tion to have an integral of unity, the posterior density is

P(Yi> ¥2) dy, dv,

_ [n(n — 1)s? n o2
= anrgs SXP|T 52N T )

(n — 1)s? N
- T('Yz —%2)%| dv, dv..
(20)

Note that the term involving $? in Eq. 17 disappears
when the density is normalized, since $? is independent
of v, and v,. The form Eq. 20 implies that vy, and vy,
have a bivariate normal distribution: they are uncor-
related, they have means 4, and ¥,, respectively, and
their variances are given by Eq. 19.

Exactly the same formulas appear in the frequentist
version as in the Bayesian version, but their interpre-
tation is quite different. In the frequentist version the
statistics 4§, and ¥, are normally distributed random
variables since the data are random, while the param-
eters <y, and vy, are fixed. In the Bayesian version the
data are fixed and hence the statistics ¥, and ¥, are also
fixed. The variables v, and v, are random, since they
are uncertain. The two interpretations are incompatible.

The case of unknown variance

The main objective of this work is to characterize
the distribution of functions of the parameters such as
the probability of early population collapse given by
Eq. 10. This quantity depends strongly upon the vari-
ance o2, which is unknown. Therefore the preceding
discussion must be extended to describe the uncertainty
about o2. The main complication that results is the ne-
cessity of choosing a prior density for o. Note that o
must be positive, and hence the prior should be nonzero
only on the positive axis. On the other hand, the log-
arithm of o ranges from —o to o, and a flat prior for
log o is consistent with the earlier choice of flat prior
for vy, and vy,. A flat prior for log o is equivalent to a
prior density for o that is proportional to do/c, and
that is the choice that I make here. This point is dis-
cussed at length in Jeffreys (1961) and Berger (1985).

The posterior density p(y,, v, 0)dy,d,do takes the
following form since o is now an unknown parameter:

P(Y1, Yo, 0) dy, dy, do = et dy, dy, do, (21)

0-n+l
where € is given by Eq. 17. Note that £ depends upon
v, and v, only through a combination involving their
squares. This motivates the introduction of polar co-
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ordinates in the v,, 'y, plane. The radial coordinate will
be denoted by p and the angular corrdinate will be
denoted by 8. They are defined by

n

p* = ms—z(vl =42
— 1 2
st @
tan 6 = ,(n _n Ds? (3’/2 : 2:;2> (23)

It is not sufficient to consider p alone, because the
probability of early extinction depends upon 6 as well
as p, and we will have to integrate that probability over
the p, 6 plane. In place of o2, we may introduce w,
defined by

— 2571 + p?
- 25 + pY) )20(2 pY), @4)

With these definitions, the posterior density takes the
relatively simple form

- p(Y1s ¥2» @) dy, dvy, do

_(m=2pdp( 1
T+ pd)m2 \T(n/2)

1
e w2l dw)— de. (25)
2w

This equation has been normalized so that each of the
separate components integrates to unity. The numerical
evaluation of integrals over the posterior density is de-
scribed in Appendix B.

COMPARISON OF THE BAYES ASSESSMENT AND
MAXIMUM LIKELIHOOD RESULTS

When performing an assessment on the basis of cen-
sus data, two possible methods are (1) calculation of
a quasi-extinction probability using maximum likeli-
hood estimates for the parameters 3,, 3,, and o or (2)
calculation of an integral of the quasi-extinction prob-
ability over the Bayes posterior distribution for the pa-
rameters.

Maximum likelihood estimates

The likelihood function as given by Egs. 17 or 21
is maximized if y, = 4, and y, = J,: this is also the
result obtained by a least squares estimation. The vari-
ance o2 is generally estimated by the unbiased estimator
S2. It is noteworthy that these values (including the
estimate S?) correspond to the mode of the posterior
density as given by (25) at p = 0 and u = n/2 — 1.

Table 1 shows the maximum likelihood statistics for
three data sets. Data for the Palila (Loxioides balleui)
and the Laysan Finch (Telespyza cantans) were taken
from graphs in Dennis et al. (1991), and data for the
Snow Goose (Anser caerulescens caerulescens) were
taken from a graph in Cooch and Cooke (1991). In
each case, the numbers were divided by 1000 before
taking logarithms to obtain the corresponding values
of x.



1072 DONALD LUDWIG Ecological Applications
Vol. 6, No. 4
TaBLE 1. Maximum likelihood statistics as defined in Eqgs. 13-18.
Species n X Y A 52 52 B, B,
Palila 8 1.03 0.032 —0.485 0.210 0.206 0.530 —0.485
Laysan Finch 24 230 0.000 -0.932 0.114 0.119 2.144  —-0.932
Snow Goose 17  1.50 0.0564 -0.217 0.176 0.0445 0.383 -0.217

Integrals of the probability of
early collapse

The probabilities of early collapse were obtained as
follows: The least squares estimate for the carrying
capacity is

N = 1000 exp(i—') (26)

B,

In order to compare similar quantities, I choose x,, x,,
and x by setting the quasi-extinction threshold at N, =
0.1N, the upper limit at N, = 0.8N, and the starting
value N = 0.2N. Then x, = log(N,/1000), x,
log(N,/1000), and x = 1og(N/1000). The corresponding
values of N,, N,, and N are shown in Table 2. The
probabilities shown in that table are the probabilities
of a population reaching the lower value N, before the
upper value N,, starting at size N, as obtained from
Egs. 29, 32, and 33. The values in the column headed
“Maximum likelihood”’ were obtained by substituting
the maximum likelihood estimates into those formulas.
The values in the column headed ‘‘Bayes posterior’”
were obtained by applying Eq. B.12 to the probabilities
of early collapse with N, = N, = N,, = 20. In each
case, the Bayes posterior values are far larger than those
obtained by maximum likelihood. In order to aid un-
derstanding of this phenomenon, I provide additional
details about the posterior distribution of the proba-
bility of early collapse.

Palila data

Fig. 1 shows the cumulative distribution functions
(using the Bayesian posterior distribution for the pa-
rameters) for the the probability of early collapse of
the Palila population, and its logarithm to the base 10.
The cumulative distribution function is approximated
by sorting the values associated with the grid points in
a numerical integration scheme: the associated weights
are one in the present scheme. The horizontal dotted
lines in each figure indicate the quantiles for 5, 25, 50,
75, and 95%, respectively. The solid curve in the right-
hand panel intersects the 50% quantile line somewhat
below —2. Hence the median of the posterior distri-

bution of the probability of early collapse is fairly close
to 0.00262, which is the maximum likelihood estimate
from Table 2. The portion of the horizontal axis be-
tween the outermost dotted vertical lines gives the Bay-
esian credibility interval for the probability of early
collapse: we expect that the true value of that proba-
bility lies within that interval with a posterior proba-
bility of 90%. In contrast, the corresponding frequentist
confidence interval is a random interval that is expected
to contain the true parameter value for 90% of a set of
random data drawn under the same postulated condi-
tions as the actual data. We may also use these curves
to check the plausibility of the computed value for the
probability of early collapse. In the left-hand panel of
Fig. 1 the solid curve is fairly straight above the 75%
quantile line. The mean of that portion of the distri-
bution is =0.6, which yields a lower estimate for the
mean of the entire distribution of 0.25 X 0.6 = 0.15.
Hence the value of 0.171 in Table 2 is plausible.

Laysan Finch data

The Laysan Finch data of Dennis et al. (1991) pro-
vide an interesting contrast to the Palila data. The ratio
of the maximum likelihood and Bayes results is even
more extreme than before, but not enough to produce
a very substantial posterior estimate for the probability
of early collapse. The left-hand panel of Fig. 2 shows
the cumulative distribution function for the logarithm
to the base 10 of that probability. If one examines the
interval between the 5 and 95% quantiles, it corre-
sponds to a multiple of over 10! in the probabilities.
Of course, the very small probabilities are of no great
significance: the probability of early collapse is small
no matter how the various possible parameter values
are weighted.

Snow Goose data

A corresponding plot for the Snow Goose data is
shown in the right-hand panel of Fig. 2. This case is
intermediate between the other two.

If restricted to a single summary statistic, the integral
of the probability of early collapse over the Bayes pos-

TABLE 2. Quasi-extinction probabilities. Here N,, N,, and N represent 10, 20, and 80% of

estimated carrying capacity, respectively.

Maximum Bayes
Species N, N, N likelihood posterior
Palila 299 2390 598 0.00262 0.171
Laysan Finch 1000 7988 1998 8.77 X 1010 1.94 X 10
Snow Goose 583 4660 1166 2.60 X 10— 0.0442
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F1G. 1. The posterior cumulative distribution function (CDF) for the probability of early collapse, given by Eq. 10, based
upon data for the Palila. The horizontal dotted lines correspond to the quantiles for 5, 25, 50 (median), 75, and 95%,
respectively. The right-hand panel has the horizontal axis transformed by taking the logarithm to base 10.
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FiG. 2. The posterior cumulative distribution function (CDF) for the probability of early collapse given by Eq. 10, based
upon data for the Laysan Finch and Snow Goose, respectively. The horizontal axes have been transformed by taking the
logarithm to base 10.
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terior seems to be a reasonable choice. However, Figs.
1 and 2 show the very wide range of plausible values
for this probability. These figures demonstrate that such
short data sets are not very informative about the pop-
ulation dynamics. One would also expect that integrals
over the posterior density would be quite sensitive to
the choice of prior density. Such sensitivity to choice
of prior is a diagnostic for poor information about the
quantity of interest. Therefore these results demon-
strate the need for caution in performing assessments.

CONCLUDING REMARKS

The major conclusion of this work is that the great
difference between maximum likelihood estimates of
extinction probabilities and corresponding Bayes es-
timates should not be ignored in a proper assessment.
However, the present work cannot be used to make a
proper assessment because it neglects some important
effects. It ignores errors and inaccuracies in the census
data. These are known to cause severe bias in estimates
and to lead to underestimation of the uncertainty in the
resulting estimates (Ludwig and Walters 1981, Walters
and Ludwig 1981). The calculations given here ignore
the effects of occasional catastrophes upon extinction
probabilities. This neglect is known to lead to under-
estimates of the probability of extinction (Ludwig
1996). The Gompertz model and the diffusion approx-
imation were used here in order to simplify later cal-
culations: they should not be used without an inves-
tigation of their accuracy (Ludwig 1996). Nevertheless,
these defects do not affect the validity of the conclusion
that point estimates are inappropriate for assessment of
extinction probabilities.

A similar contrast between results from point esti-
mates such as maximum likelihood and the Bayes es-
timates may be expected whenever the quantity of in-
terest (in the present case, the probability of early pop-
ulation collapse) varies strongly and asymmetrically
with one or more of the unknown parameters (Ellison
1996). Such quantities as the expected time to extinc-
tion or a minimum viable population may be expected
to have similar properties, but I do not recommend their
use for assessment (Ludwig 1996).

One might wonder whether a proper assessment is
feasible in light of the difficulties noted above. I believe
that all of the difficulties listed above can be overcome,
but the calculations will require much more computing
resources than the present work (D. Ludwig, unpub-
lished manuscript) and very extensive data sets. This
leaves open the issues of age- or stage-structured pop-
ulations, spatial effects, genetics, and a host of species
and ecosystem-specific considerations. We may never
achieve a proper assessment that includes all that
should be included. However, present attempts at man-
agement of natural populations typically make a sys-
tematic underestimation of hazards (Ludwig et al.
1993). We can strive to eliminate this unfortunate bias.

DONALD LUDWIG

Ecological Applications
Vol. 6, No. 4
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APPENDIX A

EVALUATION OF THE PROBABILITY OF
EARLY COLLAPSE

In this Appendix I describe the numerical method to eval-
uate Eq. 10.

Evaluation of u if B, <0

If B, < O (as is usually the case), then evaluation of the
integrals in Eq. 10 can be reduced to evaluation of the Dawson
integral (Abramowitz and Stegun 1964)

D(x) = e f e’ dr. (A1)
0
Let
v= ;‘22 @« - 2, (A2)
with corresponding definitions for v', v, and v,. Then
e’ dt
u(x, Xo, X, Bl’ B2’ o) = —VT—
f e’ dt
vo
viD — vZD
_ D) — e"D(v) (A3)

" D)) — eD(vy)’

The Dawson integral can be evaluated numerically by use of
routine DAW by W. J. Cody in the ‘‘specfun’ library (see
Acknowledgments).

Evaluation of u if B, > 0

If B, > 0, then Eq. 10 may be evaluated in terms of the
complementary error function (Abramowitz and Stegun
1964):

s [~
erfe(x) = —= | e~* dt. A4
(x) Va . (A4)
If
v = lg—i(x - %), (A5)
and v, and v, have similar definitions, then
Vi
e dt
u(x, X, X1, Byy By 0) = T
f e’ dt
vo
_ erfe(v) — erfe(v)) A6)

B erfc(vy) — erfc(v))’

The complementary error function is available as a built-in
function for many FORTRAN or C compilers. Algorithms for
its evaluation may also be obtained from Press et al. (1986).
If the arguments of the integrals in Eq. 32 are large in absolute
value, the numerator or denominator may vanish to machine
precision, or the result may be inaccurate. To avoid this, the
following approximations may be used:

u(x, xo, X1, B1, B2y 0)

ol - explv = vl
exp(v3 — v,) v 1= exp[2vy(vo — V)]
1 - exp[—2v(v — v)]

1 — exp[—2v;(vo — V)]

ifvy>5

ifv, < —5.

(A7)

APPENDIX B

INTEGRATION OVER THE POSTERIOR
DISTRIBUTION

The integration will be carried out in the polar coordinates
given in Eqgs. 22-24. The quantities p, 6, and w defined there
must be related to the original variables B, B,, and o. The
appropriate relations are

Bi=v — v.X (B.1)

B.= v, (B.2)
—_ 2 S2

Y=t l——(" ; ) 2 (B.3)
A J(n — 2)S2

Y2 = o — Ds? 2 B.4)

Z;, = pcos B (B.5)

Zz, = psin 0 (B.6)

g2 = = DSMA+ e (B.7)

2w

In order to calculate the Bayes risk of an early collapse of

the population, it is necessary to integrate u(x, x,, x;, By, B,
o) (given by Eqgs. A.3 and A.6) over the posterior density. In
order to carry out the numerical integration, the integral is
replaced by a sum over appropriate regions in the p, 8, w
space. The first step is to subdivide the ranges of p, 6, and
w. For efficiency in the evaluation, I divide these coordinate
axes into intervals that have equal probabilities. This pro-
cedure is analogous to a stratified sampling scheme: Monte
Carlo trials and the usual sensitivity analysis often yield less
accuracy per unit of calculation than such stratified sampling.
In the present case, the posterior density is known explicitly
and so design of an efficient stratified sampling scheme is
easy.

The subdivisions of the axes are determined as follows:
the points p; corresponding to the midpoints of such a sub-
division of the p axis satisfy

“(n—2pdp i-—1/2
, (1 + p)m2 N

P

i=1...,N,

p

(B.8)

where N, is the number of subdivisions. Note that the choice
of midpoints also avoids the difficulty due to an infinite in-
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terval of integration. The integral in Eq. B.8 may be evaluated
to yield

p, = \/[N,,/(Np — i+ 1/2)]%¢#=2 — 1,
i=1,...,N, (B.9)
In a similar fashion it follows that
8, = 2mw(j — 1/2)/N,, j=1...,N, (B.10)

The mesh is uniform in 6 since in fact the posterior density
is independent of 8. The analogous relation for w is

1 k- 1/2
—wyyyn/2-1 -
‘ T(n/2) J; erwrildw = o,

w

k=1,...,N,.  (B.1D

DONALD LUDWIG

Ecological Applications
Vol. 6, No. 4

This last equation cannot be solved explicitly, but w, may be
found by using a root-finding algorithm and a numerical ap-
proximation for the incomplete Gamma function (Abramo-
witz and Stegun 1964, Press et al. 1986). With these defi-
nitions, the following approximation results:

[ n-2p 1
.L J; L *. 8 Ty €

1
—wyn/2=1 . — dw d6 dp
21

1 Ne Ny N,
~ .0, w,).
N,N,N, 21 ,21 2 40,0, m) (B.12)

The function ¢ in Eq. B.12 is a shorthand for u(x, xo, x,, B,
B,, o) with the substitutions of Eqs. B.1-B.7.



